Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Org Biomol Chem ; 15(5): 1076-1079, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28059412

RESUMEN

Jawsamycin is a polyketide-nucleoside hybrid with a unique polycyclopropane moiety on a single polyketide chain. The unexpected isolation of cyclopropane deficient jawsamycin analogs allowed us to propose a stepwise cyclopropanation mechanism for the enzymatic synthesis of this polyketide. The concise timing of the cyclopropanation could be regulated by a delicate balance between reaction rates of the condensation and cyclopropanation reactions.


Asunto(s)
Productos Biológicos/metabolismo , Ciclopropanos/metabolismo , Policétidos/metabolismo , Polímeros/metabolismo , Productos Biológicos/química , Ciclopropanos/química , Estructura Molecular , Policétidos/química , Polímeros/química
2.
Angew Chem Int Ed Engl ; 53(21): 5423-6, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24756819

RESUMEN

The biosynthetic gene cluster of antifungal agent jawsamycin (FR-900848) has been identified by heterologous expression. A series of gene inactivations and in vitro and in vivo analysis of key enzymes in the biosynthetic pathway established their functions. A novel mechanism involving a radical S-adenosyl methionine (SAM) cyclopropanase collaborating with an iterative polyketide synthase is proposed for the construction of the unique polycyclopropanated backbone. Our reconstitution system sets the stage for studying the catalytic mechanism of this intriguing contiguous cyclopropanation.


Asunto(s)
Antifúngicos/metabolismo , Nucleósidos/metabolismo , Policétidos/metabolismo , Antifúngicos/química , Ciclopropanos/química , Familia de Multigenes , Nucleósidos/biosíntesis , Nucleósidos/química , Sintasas Poliquetidas/metabolismo , Policétidos/química , Streptomyces/genética , Streptomyces/metabolismo
3.
ACS Chem Biol ; 17(1): 207-216, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35000376

RESUMEN

Ferrichromes are a family of fungal siderophores with cyclic hexapeptide structures. Most fungi produce one or two ferrichrome-type siderophores. Acremonium persicinum MF-347833 produces ferrichrome-like potent Trojan horse antifungal antibiotics ASP2397 and AS2488053, the aluminum- and iron-chelating forms of AS2488059, respectively. Here, we show by gene sequencing followed by gene deletion experiments that A. persicinum MF-347833 possesses two nonribosomal peptide synthetase genes responsible for AS2488059 and ferricrocin assembly. AS2488059 was produced under iron starvation conditions and excreted into the media to serve as a defense metabolite and probably an iron courier. In contrast, ferricrocin was produced under iron-replete conditions and retained inside the cells, likely serving as an iron-sequestering molecule. Notably, the phylogenetic analyses suggest the different evolutionary origin of AS2488059 from that of conventional ferrichrome-type siderophores. Harnessing two ferrichrome-type siderophores with distinct biological properties may give A. persicinum a competitive advantage for surviving the natural environment.


Asunto(s)
Acremonium/química , Complejos de Coordinación/metabolismo , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Péptidos Cíclicos/metabolismo , Sideróforos/metabolismo , Complejos de Coordinación/química , Minería de Datos , Ferricromo/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Péptidos Cíclicos/química , Filogenia , Sideróforos/química
4.
Antimicrob Agents Chemother ; 55(2): 913-6, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21098241

RESUMEN

We recently demonstrated that the futalosine pathway was operating in some bacteria for the biosynthesis of menaquinone and that futalosine was converted into dehypoxanthinyl futalosine (DHFL) by an MqnB of Thermus thermophilus. In this study, we found that aminodeoxyfutalosine, which has adenine instead of hypoxanthine in futalosine, was directly converted into DHFL by an MqnB of Helicobacter pylori. Therefore, this step is potentially an attractive target for the development of specific anti-H. pylori drugs.


Asunto(s)
Bacterias/metabolismo , Helicobacter pylori/metabolismo , Hidrolasas/metabolismo , Nucleósidos/metabolismo , Adenina/química , Bacterias/enzimología , Cromatografía Líquida de Alta Presión , Helicobacter pylori/enzimología , Helicobacter pylori/genética , Hidrolasas/genética , Hipoxantina/metabolismo , Nucleósidos/química , Thermus thermophilus/enzimología , Thermus thermophilus/metabolismo , Vitamina K 2/metabolismo
5.
Biosci Biotechnol Biochem ; 73(5): 1137-41, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19420717

RESUMEN

In prokaryotes, menaquinone is used for respiration. In Escherichia coli, menaquinone is biosynthesized from chorismate by seven enzymes. However, very recently, we identified an alternative pathway (the futalosine pathway), which operates in some bacteria, including Streptomyces coelicolor, Helicobacter pylori, Campylobacter jejuni, and Thermus thermophilus. We describe the steps of this pathway, which branches at chorismate in a manner similar to the known pathway, but then follows a different route. This new pathway includes futalosine, an unusual nucleoside derivative consisting of inosine and o-substituted benzoate moieties, as a biosynthetic intermediate. In this study, a recombinant futalosine hydrolase (TTHA0556) of T. thermophilus, which participates in the second step of the pathway and catalyzes the reaction releasing hypoxanthine from futalosine, was prepared and used in functional analyses. Recombinant TTHA0556 formed a homotetramer and reacted only with futalosine; other structurally related nucleotides and nucleosides were not accepted. Recombinant TTHA0556 required no cofactors, and the optimum pH and temperature were 4.5 and 80 degrees C. The Km value was calculated to be 154.0+/-5.3 microM and the kcat value was 1.02/s. Recombinant TTHA0556 was slightly inhibited by hypoxanthine, with a Ki value of 1.1 mM.


Asunto(s)
Hidrolasas/metabolismo , Nucleósidos/metabolismo , Thermus thermophilus/enzimología , Vitamina K 2/metabolismo , Animales , Bovinos , Concentración de Iones de Hidrógeno , Hidrolasas/antagonistas & inhibidores , Hidrolasas/química , Hipoxantina/farmacología , Cinética , Metales/farmacología , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Temperatura , Thermus thermophilus/metabolismo
7.
Chem Biol ; 20(12): 1523-35, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24269153

RESUMEN

Quinocarcin and SF-1739, potent antitumor antibiotics, share a common tetracyclic tetrahydroisoquinoline (THIQ)-pyrrolidine core scaffold. Herein, we describe the identification of their biosynthetic gene clusters and biochemical analysis of Qcn18/Cya18 generating the previously unidentified extender unit dehydroarginine, which is a component of the pyrrolidine ring. ATP-inorganic pyrophosphate exchange experiments with five nonribosomal peptide synthetases (NRPSs) enabled us to identify their substrates. On the basis of these data, we propose that a biosynthetic pathway comprising a three-component NRPS/MbtH family protein complex, Qcn16/17/19, plays a key role in the construction of tetracyclic THIQ-pyrrolidine core scaffold involving sequential Pictet-Spengler and intramolecular Mannich reactions. Furthermore, data derived from gene inactivation experiments led us to propose late-modification steps of quinocarcin.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Isoquinolinas/metabolismo , Péptido Sintasas/metabolismo , Streptomyces/enzimología , Antibióticos Antineoplásicos/química , Vías Biosintéticas , Genes Bacterianos , Isoquinolinas/química , Datos de Secuencia Molecular , Familia de Multigenes , Péptido Sintasas/genética , Quinonas/química , Quinonas/metabolismo , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/metabolismo
8.
Science ; 321(5896): 1670-3, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18801996

RESUMEN

In microorganisms, menaquinone is an obligatory component of the electron-transfer pathway. It is derived from chorismate by seven enzymes in Escherichia coli. However, a bioinformatic analysis of whole genome sequences has suggested that some microorganisms, including pathogenic species such as Helicobacter pylori and Campylobacter jejuni, do not have orthologs of the men genes, even though they synthesize menaquinone. We deduced the outline of this alternative pathway in a nonpathogenic strain of Streptomyces by bioinformatic screening, gene knockouts, shotgun cloning with isolated mutants, and in vitro studies with recombinant enzymes. As humans and commensal intestinal bacteria, including lactobacilli, lack this pathway, it represents an attractive target for the development of chemotherapeutics.


Asunto(s)
Bacterias/metabolismo , Genes Bacterianos , Nucleósidos/metabolismo , Streptomyces coelicolor/metabolismo , Vitamina K 2/metabolismo , Archaea/enzimología , Archaea/genética , Archaea/metabolismo , Bacterias/enzimología , Bacterias/genética , Vías Biosintéticas/genética , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Ácido Corísmico/metabolismo , Clonación Molecular , Biología Computacional , Enzimas/genética , Enzimas/metabolismo , Helicobacter pylori/enzimología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Nucleósidos/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/genética , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA