Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurochem ; 150(2): 173-187, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30790293

RESUMEN

Clinical and animal studies have revealed sex-specific differences in histopathological and neurological outcome after traumatic brain injury (TBI). The impact of perioperative administration of sex steroid inhibitors on TBI is still elusive. Here, we subjected male and female C57Bl/6N mice to the controlled cortical impact (CCI) model of TBI and applied pharmacological inhibitors of steroid hormone synthesis, that is, letrozole (LET, inhibiting estradiol synthesis by aromatase) and finasteride (FIN, inhibiting dihydrotestosterone synthesis by 5α-reductase), respectively, starting 72 h prior CCI, and continuing for a further 48 h after CCI. Initial gene expression analyses showed that androgen (Ar) and estrogen receptors (Esr1) were sex-specifically altered 72 h after CCI. When examining brain lesion size, we found larger lesions in male than in female mice, but did not observe effects of FIN or LET treatment. However, LET treatment exacerbated neurological deficits 24 and 72 h after CCI. On the molecular level, FIN administration reduced calpain-dependent spectrin breakdown products, a proxy of excitotoxicity and disturbed Ca2+ homeostasis, specifically in males, whereas LET increased the reactive astrocyte marker glial fibrillary acid protein specifically in females. Examination of neurotrophins (brain-derived neurotrophic factor, neuronal growth factor, NT-3) and their receptors (p75NTR , TrkA, TrkB, TrkC) revealed CCI-induced down-regulation of TrkB and TrkC protein expression, which was reduced by LET in both sexes. Interestingly, FIN decreased neuronal growth factor mRNA expression and protein levels of its receptor TrkA only in males. Taken together, our data suggest a sex-specific impact on pathogenic processes in the injured brain after TBI. Sex hormones may thus modulate pathogenic processes in experimental TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Encéfalo/efectos de los fármacos , Dihidrotestosterona/antagonistas & inhibidores , Estradiol/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Antagonistas de Estrógenos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/efectos de los fármacos , Caracteres Sexuales
2.
Br J Anaesth ; 123(1): 60-73, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31122738

RESUMEN

BACKGROUND: Xenon is a noble gas with neuroprotective properties that can improve short and long-term outcomes in young adult mice after controlled cortical impact. This follow-up study investigates the effects of xenon on very long-term outcomes and survival. METHODS: C57BL/6N young adult male mice (n=72) received single controlled cortical impact or sham surgery and were treated with either xenon (75% Xe:25% O2) or control gas (75% N2:25% O2). Outcomes measured were: (i) 24 h lesion volume and neurological outcome score; (ii) contextual fear conditioning at 2 weeks and 20 months; (iii) corpus callosum white matter quantification; (iv) immunohistological assessment of neuroinflammation and neuronal loss; and (v) long-term survival. RESULTS: Xenon treatment significantly reduced secondary injury (P<0.05), improved short-term vestibulomotor function (P<0.01), and prevented development of very late-onset traumatic brain injury (TBI)-related memory deficits. Xenon treatment reduced white matter loss in the contralateral corpus callosum and neuronal loss in the contralateral hippocampal CA1 and dentate gyrus areas at 20 months. Xenon's long-term neuroprotective effects were associated with a significant (P<0.05) reduction in neuroinflammation in multiple brain areas involved in associative memory, including reduction in reactive astrogliosis and microglial cell proliferation. Survival was improved significantly (P<0.05) in xenon-treated animals compared with untreated animals up to 12 months after injury. CONCLUSIONS: Xenon treatment after TBI results in very long-term improvements in clinically relevant outcomes and survival. Our findings support the idea that xenon treatment shortly after TBI may have long-term benefits in the treatment of brain trauma patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Encéfalo/fisiopatología , Trastornos del Conocimiento/prevención & control , Inflamación/prevención & control , Neuronas/efectos de los fármacos , Xenón/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Enfermedad Crónica , Cognición , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Estudios de Seguimiento , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Análisis de Supervivencia
3.
J Neurochem ; 143(5): 523-533, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28921587

RESUMEN

Dimethyl fumarate (DMF) is an immunomodulatory compound to treat multiple sclerosis and psoriasis with neuroprotective potential. Its mechanism of action involves activation of the antioxidant pathway regulator Nuclear factor erythroid 2-related factor 2 thereby increasing synthesis of the cellular antioxidant glutathione (GSH). The objective of this study was to investigate whether post-traumatic DMF treatment is beneficial after experimental traumatic brain injury (TBI). Adult C57Bl/6 mice were subjected to controlled cortical impact followed by oral administration of DMF (80 mg/kg body weight) or vehicle at 3, 24, 48, and 72 h after the inflicted TBI. At 4 days after lesion (dal), DMF-treated mice displayed less neurological deficits than vehicle-treated mice and reduced histopathological brain damage. At the same time, the TBI-evoked depletion of brain GSH was prevented by DMF treatment. However, nuclear factor erythroid 2-related factor 2 target gene mRNA expression involved in antioxidant and detoxifying pathways was increased in both treatment groups at 4 dal. Blood brain barrier leakage, as assessed by immunoglobulin G extravasation, inflammatory marker mRNA expression, and CD45+ leukocyte infiltration into the perilesional brain tissue was induced by TBI but not significantly altered by DMF treatment. Collectively, our data demonstrate that post-traumatic DMF treatment improves neurological outcome and reduces brain tissue loss in a clinically relevant model of TBI. Our findings suggest that DMF treatment confers neuroprotection after TBI via preservation of brain GSH levels rather than by modulating neuroinflammation.


Asunto(s)
Antioxidantes/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Dimetilfumarato/farmacología , Neuroprotección/efectos de los fármacos , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Glutatión/metabolismo , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos
4.
Crit Care Med ; 43(1): 149-158, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25188549

RESUMEN

OBJECTIVES: To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Male C57BL/6N mice (n = 196). INTERVENTIONS: Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. MEASUREMENTS AND MAIN RESULTS: Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. CONCLUSIONS: These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Xenón/uso terapéutico , Administración por Inhalación , Animales , Encéfalo/fisiopatología , Lesiones Encefálicas/fisiopatología , Modelos Animales de Enfermedad , Marcha/fisiología , Locomoción/fisiología , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Resultado del Tratamiento , Xenón/administración & dosificación
5.
Neurosci Lett ; 795: 137047, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36603737

RESUMEN

Traumatic brain injury (TBI) is one of the most important causes of death in young adults. After brain injury cortical perfusion is impaired by cortical spreading depression, cerebral microvasospasm or microvascular thrombosis and contributes to secondary expansion of lesion into surrounding healthy brain tissue. The present study was designed to determine the regional cortical perfusion pattern after experimental TBI induced by controlled cortical impact (CCI) in male C57/BL6N mice. We performed a longitudinal time series analysis by Laser speckle contrast imaging (LSCI). Measurements were carried out before, immediately and 24 h after trauma. Immediately after CCI cortical perfusion in the lesion core dropped to 10 % of before injury (baseline; %BL) and to 21-24 %BL in the cortical area surrounding the core. Interestingly, cortical perfusion was also significantly reduced in the contralateral non-injured hemisphere (41-58 %BL) matching the corresponding brain region of the injured hemisphere. 24 h after CCI perfusion of the contralateral hemisphere returned to baseline level in the area corresponding to the lesion core, whereas the lateral area of the parietal cortex was hyperperfused (125 %BL). The lesion core region itself remained severely hypoperfused (18 to 26 %BL) during the observation period. TBI causes a maldistribution of both ipsi- and contralateral cerebral perfusion immediately after trauma, which persist for at least 24 h. Higher perfusion levels in the lesion core 24 h after trauma were associated with increased tissue damage, which supports the role of reperfusion injury for secondary brain damage after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Depresión de Propagación Cortical , Ratones , Animales , Masculino , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Encefálicas/patología , Encéfalo/patología , Perfusión
6.
Br J Pharmacol ; 177(22): 5208-5223, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32964418

RESUMEN

BACKGROUND AND PURPOSE: All-trans retinoic acid (ATRA) is a vitamin A metabolite, important in the developing and mature brain. Pre-injury ATRA administration ameliorates ischaemic brain insults in rodents. This study examined the effects of post-traumatic ATRA treatment in experimental traumatic brain injury (TBI). EXPERIMENTAL APPROACH: Male adult mice were subjected to the controlled cortical impact model of TBI or sham procedure and killed at 7 or 30 days post-injury (dpi). ATRA (10 mg kg-1, i.p.) was given immediately after the injury and 1, 2 and 3 dpi. Neurological function and sensorimotor coordination were evaluated. Brains were processed for (immuno-) histological, mRNA and protein analyses (qPCR and western blot). KEY RESULTS: ATRA treatment reduced brain lesion size, reactive astrogliosis and axonal injury at 7 dpi, and hippocampal granule cell layer (GCL) integrity was protected at 7 and 30 dpi, independent of cell proliferation in neurogenic niches and blood-brain barrier damage. Neurological and motor deficits over time and the brain tissue loss at 30 dpi were not affected by ATRA treatment. ATRA decreased gene expression of markers for damage-associated molecular pattern (HMGB1), apoptosis (caspase-3 and Bax), activated microglia (TSPO), and reactive astrogliosis (GFAP, SerpinA3N) at 7 dpi and a subset of markers at 30 dpi (TSPO, GFAP). CONCLUSION AND IMPLICATIONS: In experimental TBI, post-traumatic ATRA administration exerted brain protective effects, including long-term protection of GCL integrity, but did not affect neurological and motor deficits. Further investigations are required to optimize treatment regimens to enhance ATRA's brain protective effects and improve outcomes.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Barrera Hematoencefálica , Encéfalo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Inflamación , Masculino , Ratones , Tretinoina
7.
J Neurotrauma ; 36(14): 2272-2278, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30755137

RESUMEN

Plasminogen activator inhibitor-2 (PAI-2/SerpinB2) inhibits extracellular urokinase plasminogen activator (uPA). Under physiological conditions, PAI-2 is expressed at low levels but is rapidly induced by inflammatory triggers. It is a negative regulator of fibrinolysis and serves to stabilize clots. In the present study, PAI-2 expression is upregulated 25-fold in pericontusional brain tissue at 6 h after traumatic brain injury (TBI), with a maximum increase of 87-fold at 12 h. To investigate a potentially detrimental influence of PAI-2 on secondary post-traumatic processes, male PAI-2-deficient (PAI-2-KO) and wild-type mice (WT) were subjected to TBI by controlled cortical impact injury. Brain lesion volume and cerebral inflammation were not different. Total brain volume was significantly smaller in PAI-2-KO, indicating reduced brain swelling. The brain water content at 24 h post-insult was significantly smaller in PAI-2-KO mice. Markers of vasogenic brain edema showed no difference in blood-brain barrier integrity and expression of blood-brain barrier proteins (claudin-5, zonula occludens-1). In contrast to plasminogen activator inhibitor-1 (PAI-1), PAI-2 plays a limited role for brain lesion formation and does not influence blood-brain barrier integrity. PAI-2 contributes to brain edema formation and could therefore be a promising new target to treat post-traumatic brain edema.


Asunto(s)
Edema Encefálico/metabolismo , Edema Encefálico/patología , Lesiones Traumáticas del Encéfalo/patología , Inhibidor 2 de Activador Plasminogénico/metabolismo , Animales , Edema Encefálico/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
J Neurosci Methods ; 276: 73-78, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27894783

RESUMEN

BACKGROUND: A reliable measurement of brain water content (wet-to-dry ratio) is an important prerequisite for conducting research on mechanisms of brain edema formation. The conventionally used oven-drying method suffers from several limitations, especially in small samples. A technically demanding and time-consuming alternative is freeze-drying. NEW METHOD: Centrifugal vacuum concentrators (e.g. SpeedVac/speed-vacuum drying) are a combination of vacuum-drying and centrifugation, used to reduce the boiling temperature. These concentrators have the key advantages of improving the freeze-drying speed and maintaining the integrity of dried samples, thus, allowing e.g. DNA analyses. In the present study, we compared the heat-oven with speed-vacuum technique with regard to efficacy to remove moisture from water and brain samples and their effectiveness to distinguish treatment paradigms after experimental traumatic brain injury (TBI) caused by controlled cortical impact (CCI). RESULTS: Both techniques effectively removed water, the oven technique taking 24h and vacuum-drying taking 48h. Vacuum-drying showed lower variations in small samples (30-45mg) and was suitable for genomic analysis as exemplified by sex genotyping. The effect of sodium bicarbonate (NaBic8.4%) on brain edema formation after CCI was investigated in small samples (2×1mm). Only vacuum-drying showed low variation and significant improvement under NaBic8.4% treatment. COMPARISON WITH AN EXISTING METHOD: The receiver operating curves (ROC) analysis demonstrated that vacuum-drying (area under the curve (AUC):0.867-0.967) was superior to the conventional heat-drying method (AUC:0.367-0.567). CONCLUSIONS: The vacuum method is superior in terms of quantifying water content in small samples. In addition, vacuum-dried samples can also be used for subsequent analyses, e.g., PCR analysis.


Asunto(s)
Química Encefálica , Desecación/métodos , Calor , Vacio , Agua/análisis , Animales , Área Bajo la Curva , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Centrifugación , Desecación/instrumentación , Modelos Animales de Enfermedad , Estudios de Factibilidad , Técnicas de Genotipaje , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Curva ROC , Bicarbonato de Sodio/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA