Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Haematologica ; 103(2): 221-230, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217782

RESUMEN

Pure red cell aplasia is an orphan disease, and as such lacks rationally established standard therapies. Most cases are idiopathic; a subset is antibody-mediated. There is overlap between idiopathic cases and those with T-cell large granular lymphocytic leukemia, hypogammaglobulinemia, and low-grade lymphomas. In each of the aforementioned, the pathogenetic mechanisms may involve autoreactive cytotoxic responses. We selected 62 uniformly diagnosed pure red cell aplasia patients and analyzed their pathophysiologic features and responsiveness to rationally applied first-line and salvage therapies in order to propose diagnostic and therapeutic algorithms that may be helpful in guiding the management of prospective patients, 52% of whom were idiopathic, while the others involved large granular lymphocytic leukemia, thymoma, and B-cell dyscrasia. T-cell-mediated responses ranged between a continuum from polyclonal to monoclonal (as seen in large granular lymphocytic leukemia). During a median observation period of 40 months, patients received a median of two different therapies to achieve remission. Frequently used therapy included calcineurin-inhibitors with a steroid taper yielding a first-line overall response rate of 76% (53/70). Oral cyclophosphamide showed activity, albeit lower than that produced by cyclosporine. Intravenous immunoglobulins were effective both in parvovirus patients and in hypogammaglobulinemia cases. In salvage settings, alemtuzumab is active, particularly in large granular lymphocytic leukemia-associated cases. Other potentially useful salvage options include rituximab, anti-thymocyte globulin and bortezomib. The workup of acquired pure red cell aplasia should include investigations of common pathological associations. Most effective therapies are directed against T-cell-mediated immunity, and therapeutic choices need to account for associated conditions that may help in choosing alternative salvage agents, such as intravenous immunoglobulin, alemtuzumab and bortezomib.


Asunto(s)
Algoritmos , Manejo de la Enfermedad , Aplasia Pura de Células Rojas/terapia , Terapia Recuperativa/métodos , Adulto , Anciano , Anciano de 80 o más Años , Alemtuzumab/uso terapéutico , Antineoplásicos/uso terapéutico , Bortezomib/uso terapéutico , Femenino , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
2.
Haematologica ; 102(6): 1028-1034, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28255022

RESUMEN

Myelodysplastic syndromes are typically diseases of older adults. Patients in whom the onset is early may have distinct molecular and clinical features or reflect a demographic continuum. The identification of differences between "early onset" patients and those diagnosed at a traditional age has the potential to advance understanding of the pathogenesis of myelodysplasia and may lead to formation of distinct morphological subcategories. We studied a cohort of 634 patients with various subcategories of myelodysplastic syndrome and secondary acute myeloid leukemia, stratifying them based on age at presentation and clinical parameters. We then characterized molecular abnormalities detected by next-generation deep sequencing of 60 genes that are commonly mutated in myeloid malignancies. The number of mutations increased linearly with age and on average, patients >50 years of age had more mutations. TET2, SRSF2, and DNMT3A were more commonly mutated in patients >50 years old compared to patients ≤50 years old. In general, patients >50 years of age also had more mutations in spliceosomal, epigenetic modifier, and RAS gene families. Although there are age-related differences in molecular features among patients with myelodysplasia, most notably in the incidence of SRSF2 mutations, our results suggest that patients ≤50 years old belong to a disease continuum with a distinct pattern of early onset ancestral events.


Asunto(s)
Edad de Inicio , Mutación , Síndromes Mielodisplásicos/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas/genética , Factores de Empalme Serina-Arginina/genética , Adulto Joven
4.
Blood Adv ; 3(3): 339-349, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30709865

RESUMEN

Somatic TET2 mutations (TET2 MT) are frequent in myeloid neoplasia (MN), particularly chronic myelomonocytic leukemia (CMML). TET2 MT includes mostly loss-of-function/hypomorphic hits. Impaired TET2 activity skews differentiation of hematopoietic stem cells toward proliferating myeloid precursors. This study was prompted by the observation of frequent biallelic TET2 gene inactivations (biTET2 i ) in CMML. We speculated that biTET2 i might be associated with distinct clinicohematological features. We analyzed TET2 MT in 1045 patients with MN. Of 82 biTET2 i cases, 66 were biTET2 MT, 13 were hemizygous TET2 MT, and 3 were homozygous TET2 MT (uniparental disomy); the remaining patients (denoted biTET2 - hereafter) were either monoallelic TET2 MT (n = 96) or wild-type TET2 (n = 823). Truncation mutations were found in 83% of biTET2 i vs 65% of biTET2 - cases (P = .02). TET2 hits were founder lesions in 72% of biTET2 i vs 38% of biTET2 - cases (P < .0001). In biTET2 i , significantly concurrent hits included SRSF2 MT (33%; P < .0001) and KRAS/NRAS MT (16%; P = .03) as compared with biTET2 - When the first TET2 hit was ancestral in biTET2 i , the most common subsequent hits affected a second TET2 MT, followed by SRSF2 MT, ASXL1 MT, RAS MT, and DNMT3A MT BiTET2 i patients without any monocytosis showed an absence of SRSF2 MT BiTET2 i patients were older and had monocytosis, CMML, normal karyotypes, and lower-risk disease compared with biTET2 - patients. Hence, while a second TET2 hit occurred frequently, biTET2 i did not portend faster progression but rather determined monocytic differentiation, consistent with its prevalence in CMML. Additionally, biTET2 i showed lower odds of cytopenias and marrow blasts (≥5%) and higher odds of myeloid dysplasia and marrow hypercellularity. Thus, biTET2 i might represent an auxiliary assessment tool in MN.


Asunto(s)
Proteínas de Unión al ADN/genética , Síndromes Mielodisplásicos/genética , Proteínas Proto-Oncogénicas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Femenino , Silenciador del Gen , Humanos , Masculino , Persona de Mediana Edad , Mutación , Síndromes Mielodisplásicos/sangre , Síndromes Mielodisplásicos/patología , Fenotipo , Pronóstico , Proteínas Proto-Oncogénicas/metabolismo , Adulto Joven
5.
Leukemia ; 32(8): 1751-1761, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29795413

RESUMEN

Somatic mutations in TET2 are common in myelodysplastic syndromes (MDS), myeloproliferative, and overlap syndromes. TET2 mutant (TET2MT) clones are also found in asymptomatic elderly individuals, a condition referred to as clonal hematopoiesis of indeterminate potential (CHIP). In various entities of TET2MT neoplasia, we examined the phenotype in relation to the strata of TET2 hits within the clonal hierarchy. Using deep sequencing, 1781 mutations were found in 1205 of 4930 patients; 40% of mutant cases were biallelic. Hierarchical analysis revealed that of TET2MT cases >40% were ancestral, e.g., representing 8% of MDS. Higher (earlier) TET2 lesion rank within the clonal hierarchy (greater clonal burden) was associated with impaired survival. Moreover, MDS driven by ancestral TET2MT is likely derived from TET2MT CHIP with a penetrance of ~1%. Following ancestral TET2 mutations, individual disease course is determined by secondary hits. Using multidimensional analyses, we demonstrate how hits following the TET2 founder defect induces phenotypic shifts toward dysplasia, myeloproliferation, or progression to AML. In summary, TET2MT CHIP-derived MDS is a subclass of MDS that is distinct from de novo disease.


Asunto(s)
Células Clonales/patología , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteínas Proto-Oncogénicas/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Diferenciación Celular , Evolución Clonal , Células Clonales/metabolismo , Dioxigenasas , Progresión de la Enfermedad , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA