Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci ; 23(4): 1133-41, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12598601

RESUMEN

Neurons of the medial nucleus of the trapezoid body, which transmit auditory information that is used to compute the location of sounds in space, are capable of firing at high frequencies with great temporal precision. We found that elimination of the Kv3.1 gene in mice results in the loss of a high-threshold component of potassium current and failure of the neurons to follow high-frequency stimulation. A partial decrease in Kv3.1 current can be produced in wild-type neurons of the medial nucleus of the trapezoid body by activation of protein kinase C. Paradoxically, activation of protein kinase C increases temporal fidelity and the number of action potentials that are evoked by intermediate frequencies of stimulation. Computer simulations confirm that a partial decrease in Kv3.1 current is sufficient to increase the accuracy of response at intermediate frequencies while impairing responses at high frequencies. We further establish that, of the two isoforms of the Kv3.1 potassium channel that are expressed in these neurons, Kv3.1a and Kv3.1b, the decrease in Kv3.1 current is mediated by selective phosphorylation of the Kv3.1b isoform. Using site-directed mutagenesis, we identify a specific C-terminal phosphorylation site responsible for the observed difference in response of the two isoforms to protein kinase C activation. Our results suggest that modulation of Kv3.1 by phosphorylation allows auditory neurons to tune their responses to different patterns of sensory stimulation.


Asunto(s)
Potenciales de Acción , Tronco Encefálico/fisiología , Potenciales Evocados Auditivos , Neuronas/fisiología , Neuropéptidos/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Animales , Tronco Encefálico/citología , Células CHO , Células Cultivadas , Cricetinae , Conductividad Eléctrica , Cinética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/fisiología , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio/genética , Canales de Potasio/fisiología , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/metabolismo , Serina/metabolismo , Canales de Potasio Shaw , Acetato de Tetradecanoilforbol/farmacología
2.
J Neurosci ; 24(33): 7335-43, 2004 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-15317859

RESUMEN

Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells responsible for direction-selective GABA release, we performed whole-cell recordings from starburst cells in mouse retina. Voltage-clamp recordings revealed prominent voltage-dependent K(+) currents. The currents were mostly blocked by 1 mm TEA, activated rapidly at voltages more positive than -20 mV, and deactivated quickly, properties reminiscent of the currents carried by the Kv3 subfamily of K+ channels. Immunoblots confirmed the presence of Kv3.1 and Kv3.2 proteins in retina and immunohistochemistry revealed their expression in starburst cell somata and dendrites. The Kv3-like current in starburst cells was absent in Kv3.1-Kv3.2 knock-out mice. Current-clamp recordings showed that the fast activation of the Kv3 channels provides a voltage-dependent shunt that limits depolarization of the soma to potentials more positive than -20 mV. This provides a mechanism likely to contribute to the electrical isolation of individual starburst cell dendrites, a property thought essential for direction selectivity. This function of Kv3 channels differs from that in other neurons where they facilitate high-frequency repetitive firing. Moreover, we found a gradient in the intensity of Kv3.1b immunolabeling favoring proximal regions of starburst cells. We hypothesize that this Kv3 channel gradient contributes to the preference for centrifugal signal flow in dendrites underlying direction-selective GABA release from starburst amacrine cells


Asunto(s)
Células Amacrinas/fisiología , Neuropéptidos/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Células Amacrinas/metabolismo , Animales , Conductividad Eléctrica , Ratones , Ratones Noqueados , Neuropéptidos/análisis , Neuropéptidos/genética , Técnicas de Placa-Clamp , Canales de Potasio/análisis , Canales de Potasio/genética , Retina/química , Retina/metabolismo , Canales de Potasio Shaw , Transmisión Sináptica
3.
J Neurophysiol ; 87(3): 1303-10, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11877504

RESUMEN

Fast spiking (FS), GABAergic neurons of the reticular thalamic nucleus (RTN) are capable of firing high-frequency trains of brief action potentials, with little adaptation. Studies in recombinant systems have shown that high-voltage-activated K(+) channels containing the Kv3.1 and/or Kv3.2 subunits display biophysical properties that may contribute to the FS phenotype. Given that RTN expresses high levels of Kv3.1, with little or no Kv3.2, we tested whether this subunit was required for the fast action potential repolarization mechanism essential to the FS phenotype. Single- and multiple-action potentials were recorded using whole-cell current clamp in RTN neurons from brain slices of wild-type and Kv3.1-deficient mice. At 23 degrees C, action potentials recorded from homozygous Kv3.1 deficient mice (Kv3.1(-/-)) compared with their wild-type (Kv3.1(+/+)) counterparts had reduced amplitudes (-6%) and fast after-hyperpolarizations (-16%). At 34 degrees C, action potentials in Kv3.1(-/-) mice had increased duration (21%) due to a reduced rate of repolarization (-30%) when compared with wild-type controls. Action potential trains in Kv3.1(-/-) were associated with a significantly greater spike decrement and broadening and a diminished firing frequency versus injected current relationship (F/I) at 34 degrees C. There was no change in either spike count or maximum instantaneous frequency during low-threshold Ca(2+) bursts in Kv3.1(-/-) RTN neurons at either temperature tested. Our findings show that Kv3.1 is not solely responsible for fast spikes or high-frequency firing in RTN neurons. This suggests genetic redundancy in the system, possibly in the form of other Kv3 members, which may suffice to maintain the FS phenotype in RTN neurons in the absence of Kv3.1.


Asunto(s)
Potenciales de Acción/fisiología , Núcleos Talámicos Intralaminares/fisiología , Neuropéptidos/genética , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Animales , Conducta Animal , Núcleos Talámicos Intralaminares/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Neuropéptidos/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Canales de Potasio Shaw
4.
Eur J Neurosci ; 15(1): 40-50, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11860505

RESUMEN

During the last few years a variety of genetically encodable optical probes that monitor physiological parameters such as local pH, Ca2+, Cl-, or transmembrane voltage have been developed. These sensors are based on variants of green-fluorescent protein (GFP) and can be synthesized by mammalian cells after transfection with cDNA. To use these sensor proteins in intact brain tissue, specific promoters are needed that drive protein expression at a sufficiently high expression level in distinct neuronal subpopulations. Here we investigated whether the promoter sequence of a particular potassium channel may be useful for this purpose. We produced transgenic mouse lines carrying the gene for enhanced yellow-fluorescent protein (EYFP), a yellow-green pH- and Cl- sensitive variant of GFP, under control of the Kv3.1 K+ channel promoter (pKv3.1). Transgenic mouse lines displayed high levels of EYFP expression, identified by confocal microscopy, in adult cerebellar granule cells, interneurons of the cerebral cortex, and in neurons of hippocampus and thalamus. Furthermore, using living cerebellar slices we demonstrate that expression levels of EYFP are sufficient to report intracellular pH and Cl- concentration using imaging techniques and conditions analogous to those used with conventional ion-sensitive dyes. We conclude that transgenic mice expressing GFP-derived sensors under the control of cell-type specific promoters, provide a unique opportunity for functional characterization of defined subsets of neurons.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Química Encefálica/genética , Cloruros/metabolismo , Proteínas Luminiscentes/biosíntesis , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Regiones Promotoras Genéticas/genética , Animales , Encéfalo/anatomía & histología , Agonistas del GABA/farmacología , Ácido Glutámico/farmacología , Concentración de Iones de Hidrógeno , Ratones , Ratones Transgénicos , Microscopía Confocal , Muscimol/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shaw
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA