Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 6(3): 1541-9, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24411013

RESUMEN

Nanohybrids consisting of silver nanoparticles (Ag), clay platelets, and a nonionic surfactant were prepared and used as the substrate for surface-enhanced Raman scattering (SERS). The nanoscale silicate platelets (SP) (with dimensions of 100 × 100 nm(2) and a thickness of ∼1 nm) were previously prepared from exfoliation of the natural layered silicates. The tricomponent nanohybrids, Ag-SP-surfactant (Ag-SP-S), were prepared by in situ reduction of AgNO3 in the presence of clay and the surfactant. The clay platelets with a large surface area and ionic charge (ca. 18 000 sodium ions per platelet) allowed for the stabilization of Ag nanoparticles in the range of 10-30 nm in diameter. With the addition of a nonionic surfactant such as poly(oxyethylene) alkyl ether, the tricomponent Ag-SP-S nanohybrids possessed an altered affinity for contacting microorganisms. The particle size and interparticle gaps between neighboring Ag on SP were characterized by TEM. The surface tension of Ag-SP and Ag-SP-S in water implied different interactions between Ag and hydrophobic bacteria ( Escherichia coli and Mycobacterium smegmatis ). By increasing the surfactant content in Ag-SP-S, the SERS peak intensity was dramatically enhanced compared to the Ag-SP counterpart. The nanohybrids, Ag-SP and Ag-SP-S, with the advantages of varying hydrophobic affinity, floating in medium, and 3D hot-junction enhancement could be tailored for use as SERS substrates. The selective detection of hydrophobic microorganisms and larger biological cells makes SERS a possible rapid, label-free, and culture-free method of biodetection.


Asunto(s)
Bacterias/aislamiento & purificación , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/química , Silicatos/farmacología , Plata/farmacología , Espectrometría Raman/métodos , Tensoactivos/farmacología , Bacterias/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Mycobacterium smegmatis/efectos de los fármacos , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Staphylococcus aureus/efectos de los fármacos
2.
J Mater Chem B ; 2(9): 1136-1143, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32261349

RESUMEN

Novel nanohybrid arrays of silver (Ag)-on-silicate platelets with flexibility and three-dimensional (3D) hot-junctions (particularly in z-direction) were discovered for improving the stability of free nanoparticles and the mobility of rigid (glass or silicon-based) substrates in surface-enhanced Raman scattering (SERS) detection technology. Since the Ag nanoparticles are adsorbed on both sides of few nanometer-thick silicate platelets (single-layer exfoliated clay), the geometric arrangement of Ag on both sides of the nanoplatelets (Ag/NSP) may induce strong hot-junctions (z-direction) in reference to the pristine montmorillonite clay (multi-layers) at the thickness of ∼20 nm, measured by small molecules (adenine of DNA) and bacteria (S. aureus). Enormous red-shifts (16 nm wavelength difference) were observed between single layer and multi-layer silicate platelets, showing that huge surface plasmon enhancement comes from hot junctions in the z-direction (∼7 times higher than 2D hot-junctions of traditional SERS biochips). Further, the Ag/NSP SERS substrate displays a free floating mobility and optical transparency (less background interference), which inherently increase the contacted surface-area between the substrate and microorganisms, to enhance the SERS sensitivity. The surface modulation with a surfactant could be complimentary towards a variety of microorganisms including hydrophobic microbes, irregular-shaped microorganisms and larger biological cells due to their mutual specific surface interactions. It was anticipated to apply in the rapid detection for varied microbes with label-free and culture-free characterizations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA