Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Angew Chem Int Ed Engl ; 61(14): e202114437, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-34942052

RESUMEN

The widespread utilization of proton exchange membrane (PEM) electrolyzers currently remains uncertain, as they rely on the use of highly scarce iridium as the only viable catalyst for the oxygen evolution reaction (OER), which is known to present the major energy losses of the process. Understanding the mechanistic origin of the different activities and stabilities of Ir-based catalysts is, therefore, crucial for a scale-up of green hydrogen production. It is known that structure influences the dissolution, which is the main degradation mechanism and shares common intermediates with the OER. In this Minireview, the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER. A perspective on future directions of investigation is also given.

2.
J Am Chem Soc ; 142(36): 15496-15504, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794757

RESUMEN

Single-atom catalysts (SACs) have quickly emerged as a new class of catalytic materials. When confronted with classical carbon-supported nanoparticulated catalysts (Pt/C), SACs are often claimed to have superior electrocatalytic properties, e.g., stability. In this study, we critically assess this statement by investigating S-doped carbon-supported Pt SACs as a representative example of noble-metal-based SACs. We use a set of complementary techniques, which includes online inductively coupled plasma mass spectrometry (online ICP-MS), identical location transmission electron microscopy (IL-TEM), and X-ray photoelectron spectroscopy (XPS). It is shown by online ICP-MS that the dissolution behavior of as-synthesized Pt SACs is significantly different from that of metallic Pt/C. Moreover, Pt SACs are, indeed, confirmed to be more stable toward Pt dissolution. When cycled to potentials of up to 1.5 VRHE, however, the dissolution profiles of Pt SACs and Pt/C become similar. IL-TEM and XPS show that this transition is due to morphological and chemical changes caused by cycling. The latter, in turn, is a consequence of the relatively poor stability of S ligands. As monitored by online ICP-MS and XPS, significant amounts of sulfur leave the catalyst during oxidation. Hence, in case catalysts with improved stability in the anodic potential region are desired, more robust supports and ligands must be developed.

3.
Phys Chem Chem Phys ; 22(16): 8768-8780, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32285064

RESUMEN

The mechanism of the hydrogen evolution reaction, although intensively studied for more than a century, remains a fundamental scientific challenge. Many important questions are still open, making it elusive to establish rational principles for electrocatalyst design. In this work, a comprehensive investigation was conducted to identify which dynamic phenomena at the electrified interface are prerequisite for the formation of molecular hydrogen. In fact, what we observe as an onset of the macroscopic faradaic current originates from dynamic structural changes in the double layer, which are entropic in nature. Based on careful analysis of the activation process, an electrocatalytic descriptor is introduced, evaluated and experimentally confirmed. The catalytic activity descriptor is named as the potential of minimum entropy. The experimentally verified catalytic descriptor reveals significant potential to yield innovative insights for the design of catalytically active materials and interfaces.

4.
Nano Lett ; 19(8): 4919-4927, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31021636

RESUMEN

Catalytic properties of advanced functional materials are determined by their surface and near-surface atomic structure, composition, morphology, defects, compressive and tensile stresses, etc; also known as a structure-activity relationship. The catalysts structural properties are dynamically changing as they perform via complex phenomenon dependent on the reaction conditions. In turn, not just the structural features but even more importantly, catalytic characteristics of nanoparticles get altered. Definitive conclusions about these phenomena are not possible with imaging of random nanoparticles with unknown atomic structure history. Using a contemporary PtCu-alloy electrocatalyst as a model system, a unique approach allowing unprecedented insight into the morphological dynamics on the atomic-scale caused by the process of dealloying is presented. Observing the detailed structure and morphology of the same nanoparticle at different stages of electrochemical treatment reveals new insights into atomic-scale processes such as size, faceting, strain and porosity development. Furthermore, based on precise atomically resolved microscopy data, Kinetic Monte Carlo (KMC) simulations provide further feedback into the physical parameters governing electrochemically induced structural dynamics. This work introduces a unique approach toward observation and understanding of nanoparticles dynamic changes on the atomic level and paves the way for an understanding of the structure-stability relationship.

5.
Angew Chem Int Ed Engl ; 59(35): 14736-14746, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32187414

RESUMEN

To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy-dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2 RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2 RR literature. In this Minireview, the recent progress on understanding the stability of copper-based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.

6.
Anal Chem ; 91(16): 10353-10356, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31379155

RESUMEN

The future significance of energy conversion has stimulated intense investigation of various electrocatalytic materials. Hence electrocatalysts have become the subject of electrochemical characterization on a daily basis. In certain cases of interest, when measuring electrochemical reactions beyond the onset potentials, however, appropriateness of existing electroanalytical methods may be questioned and alternative approaches need to be developed. The present study highlights some shortcomings in the electrochemical investigation of gas evolving reactions. The oxygen evolution reaction (OER) is selected as a case example with a specific focus on the electrochemical stability of a nanoparticulate iridium catalyst. When conventional electrochemical methods, such as thin film rotating disc electrodes are employed to study the materials' stability, the intrinsic degradation is masked by oxygen bubbles, which are inherently being formed during the reaction, especially when high current densities are used. In this Letter, we present a solution to this issue, the so-called floating electrode arrangement. Its elegant usage enables fast and reliable electrochemical characterization of oxygen evolution electrocatalysts.

7.
Angew Chem Int Ed Engl ; 58(38): 13266-13270, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31163100

RESUMEN

Preparation of large quantities of high-performance supported Pt-alloy electrocatalysts is crucial for the faster development and implementation of low-temperature proton exchange membrane fuel cells (PEMFCs). One of the prospective nanofabrication synthesis methods is based on the galvanic displacement (GD) reaction. A facile, highly reproducible, gram scale, water-based double passivation GD method is now presented for the synthesis of carbon-supported Pt-M nanoparticles (M=Cu, Ni, Co). It offers great flexibility over the catalyst design, such as the choice of the sacrificial metal (M), variation of the chemical composition of alloy, variation of total metal loading (Pt+M) on carbon support, or even variation of the carbon support itself. The obtained Pt-alloy catalysts are several times more active compared to a Pt reference and exhibits better stability during accelerated degradation tests performed at 60 °C.

8.
J Am Chem Soc ; 139(36): 12837-12846, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28810123

RESUMEN

Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

9.
Acc Chem Res ; 49(9): 2015-22, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27541965

RESUMEN

The foreseeable worldwide energy and environmental challenges demand renewable alternative sources, energy conversion, and storage technologies. Therefore, electrochemical energy conversion devices like fuel cells, electrolyzes, and supercapacitors along with photoelectrochemical devices and batteries have high potential to become increasingly important in the near future. Catalytic performance in electrochemical energy conversion results from the tailored properties of complex nanometer-sized metal and metal oxide particles, as well as support nanostructures. Exposed facets, surface defects, and other structural and compositional features of the catalyst nanoparticles affect the electrocatalytic performance to varying degrees. The characterization of the nanometer-size and atomic regime of electrocatalysts and its evolution over time are therefore paramount for an improved understanding and significant optimization of such important technologies like electrolyzers or fuel cells. Transmission electron microscopy (TEM) and scanning transmission electron microscope (STEM) are to a great extent nondestructive characterization tools that provide structural, morphological, and compositional information with nanoscale or even atomic resolution. Due to recent marked advancement in electron microscopy equipment such as aberration corrections and monochromators, such insightful information is now accessible in many institutions around the world and provides huge benefit to everyone using electron microscopy characterization in general. Classical ex situ TEM characterization of random catalyst locations however suffers from two limitations regarding catalysis. First, the necessary low operation pressures in the range of 10(-6) to 10(-9) mbar for TEM are not in line with typical reaction conditions, especially considering electrocatalytic solid-liquid interfaces, so that the active state cannot be assessed. Second, and somewhat related, is the lack of time resolution for the evaluation of alterations of the usually highly heterogeneous nanomaterials. Two methods offer a solution to these shortcomings, namely, identical location TEM (IL-TEM) and electrochemical in situ liquid TEM. The former is already well established and has delivered novel insights particularly into degradation processes; however, characterization is still performed in vacuum. The latter circumvents this issue by using dedicated in situ TEM holders but introduces extremely demanding technical challenges. Although the introduction of revolutionizing thin SiN window cells, which elegantly confine the specimen from vacuum, has allowed demonstration of the potential of the in situ approach, the reproducibility and data interpretation is still limited predominately due to the strong interaction of the electron beam with the supporting electrolyte and electrode material. Because of the importance of understanding the nanoelectrochemical structure-function relationship, this Account aims to convey a timely perspective on the opportunities and particularly the challenges in electrochemical identical location TEM and in situ liquid cell TEM with a focus on electrochemical energy conversion.

10.
Phys Chem Chem Phys ; 19(32): 21446-21452, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28759065

RESUMEN

The dissolution of different platinum-based nanoparticles deposited on a commercial high-surface area carbon (HSAC) support in thin catalyst films is investigated using a highly sensitive electrochemical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS). The previously reported particle-size-dependent dissolution of Pt is confirmed on selected industrial samples with a mean Pt particle size ranging from 1 to 4.8 nm. This trend is significantly altered when a catalyst is diluted by the addition of HSAC. This indicates that the intrinsic dissolution properties are masked by local oversaturation phenomena, the so-called confinement effect. Furthermore, by replacing the standard HSAC support with a support having an order of magnitude higher specific surface area (a micro- and mesoporous nitrogen-doped high surface area carbon, HSANDC), Pt dissolution is reduced even further. This is due to the so-called non-intrinsic confinement and entrapment effects of the (large amount of) micropores and small mesopores doped with N atoms. The observed more effective Pt re-deposition is presumably induced by local Pt oversaturation and the presence of nitrogen nucleation sites. Overall, our study demonstrates the high importance and beneficial effects of porosity, loading and N doping of the carbon support on the Pt stability in the catalyst layer.

11.
Phys Chem Chem Phys ; 16(27): 13610-5, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24777064

RESUMEN

In this study the performance enhancement effect of structural ordering for the oxygen reduction reaction (ORR) is systematically studied. Two samples of PtCu3 nanoparticles embedded on a graphitic carbon support are carefully prepared with identical initial composition, particle dispersion and size distribution, yet with different degrees of structural ordering. Thus we can eliminate all coinciding effects and unambiguously relate the improved activity of the ORR and more importantly the enhanced stability to the ordered nanostructure. Interestingly, the electrochemically induced morphological changes are common to both ordered and disordered samples. The observed effect could have a groundbreaking impact on the future directions in the rational design of active and stable platinum alloyed ORR catalysts.

12.
Acta Chim Slov ; 61(2): 280-3, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25125111

RESUMEN

Platinum catalyst stability has been investigated under potentiostatic and potentiodynamic conditions with and without the presence of chloride anions. The combination of rotating disc electrode (RDE) and identical location scanning electron microscopy (IL-SEM) methods reveals that potentiodynamic degradation is much more severe compared to the potentiostatic and that chloride enhances platinum dissolution thus catalyst degradation. IL-SEM method nicely shows the platinum dissolution and redeposition on the top of a catalyst film.

13.
Inorg Chem Front ; 11(2): 323-341, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235274

RESUMEN

Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.

14.
Nat Commun ; 15(1): 3601, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684654

RESUMEN

Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.

15.
ACS Catal ; 14(4): 2473-2486, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38384942

RESUMEN

In the present work, we report on a synergistic relationship between platinum nanoparticles and a titanium oxynitride support (TiOxNy/C) in the context of oxygen reduction reaction (ORR) catalysis. As demonstrated herein, this composite configuration results in significantly improved electrocatalytic activity toward the ORR relative to platinum dispersed on carbon support (Pt/C) at high overpotentials. Specifically, the ORR performance was assessed under an elevated mass transport regime using the modified floating electrode configuration, which enabled us to pursue the reaction closer to PEMFC-relevant current densities. A comprehensive investigation attributes the ORR performance increase to a strong interaction between platinum and the TiOxNy/C support. In particular, according to the generated strain maps obtained via scanning transmission electron microscopy (STEM), the Pt-TiOxNy/C analogue exhibits a more localized strain in Pt nanoparticles in comparison to that in the Pt/C sample. The altered Pt structure could explain the measured ORR activity trend via the d-band theory, which lowers the platinum surface coverage with ORR intermediates. In terms of the Pt particle size effect, our observation presents an anomaly as the Pt-TiOxNy/C analogue, despite having almost two times smaller nanoparticles (2.9 nm) compared to the Pt/C benchmark (4.8 nm), manifests higher specific activity. This provides a promising strategy to further lower the Pt loading and increase the ECSA without sacrificing the catalytic activity under fuel cell-relevant potentials. Apart from the ORR, the platinum-TiOxNy/C interaction is of a sufficient magnitude not to follow the typical particle size effect also in the context of other reactions such as CO stripping, hydrogen oxidation reaction, and water discharge. The trend for the latter is ascribed to the lower oxophilicity of Pt-based on electrochemical surface coverage analysis. Namely, a lower surface coverage with oxygenated species is found for the Pt-TiOxNy/C analogue. Further insights were provided by performing a detailed STEM characterization via the identical location mode (IL-STEM) in particular, via 4DSTEM acquisition. This disclosed that Pt particles are partially encapsulated within a thin layer of TiOxNy origin.

16.
ACS Catal ; 14(6): 4303-4317, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38510667

RESUMEN

A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 °C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 VRHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 VRHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 VRHE rather than 0.6-0.95 VRHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.

17.
ACS Appl Mater Interfaces ; 15(37): 44482-44492, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695941

RESUMEN

Development of a robust photocathode using low-cost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.

18.
RSC Adv ; 13(7): 4601-4611, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36760270

RESUMEN

The design of catalysts with stable and finely dispersed platinum or platinum alloy nanoparticles on the carbon support is key in controlling the performance of proton exchange membrane (PEM) fuel cells. In the present work, an intermetallic PtCo/C catalyst is synthesized via double-passivation galvanic displacement. TEM and XRD confirm a significantly narrowed particle size distribution for the catalyst particles compared to commercial benchmark catalysts (Umicore PtCo/C). Only about 10% of the mass fraction of PtCo particles show a diameter larger than 8 nm, whereas this is up to or even more than 35% for the reference systems. This directly results in a considerable increase in electrochemically active surface area (96 m2 g-1 vs. >70 m2 g-1), which confirms the more efficient usage of precious catalyst metal in the novel catalyst. Single-cell tests validate this finding by improved PEM fuel cell performance. Reducing the cathode catalyst loading from 0.4 mg cm-2 to 0.25 mg cm-2 resulted in a power density drop at an application-relevant 0.7 V of only 4% for the novel catalyst, compared to the 10% and 20% for the commercial benchmarks reference catalysts.

19.
ACS Appl Nano Mater ; 6(12): 10421-10430, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37384128

RESUMEN

Aiming at speeding up the discovery and understanding of promising electrocatalysts, a novel experimental platform, i.e., the Nano Lab, is introduced. It is based on state-of-the-art physicochemical characterization and atomic-scale tracking of individual synthesis steps as well as subsequent electrochemical treatments targeting nanostructured composites. This is provided by having the entire experimental setup on a transmission electron microscopy (TEM) grid. Herein, the oxygen evolution reaction nanocomposite electrocatalyst, i.e., iridium nanoparticles dispersed on a high-surface-area TiOxNy support prepared on the Ti TEM grid, is investigated. By combining electrochemical concepts such as anodic oxidation of TEM grids, floating electrode-based electrochemical characterization, and identical location TEM analysis, relevant information from the entire composite's cycle, i.e., from the initial synthesis step to electrochemical operation, can be studied. We reveal that Ir nanoparticles as well as the TiOxNy support undergo dynamic changes during all steps. The most interesting findings made possible by the Nano Lab concept are the formation of Ir single atoms and only a small decrease in the N/O ratio of the TiOxNy-Ir catalyst during the electrochemical treatment. In this way, we show that the precise influence of the nanoscale structure, composition, morphology, and electrocatalyst's locally resolved surface sites can be deciphered on the atomic level. Furthermore, the Nano Lab's experimental setup is compatible with ex situ characterization and other analytical methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy, and identical location scanning electron microscopy, hence providing a comprehensive understanding of structural changes and their effects. Overall, an experimental toolbox for the systematic development of supported electrocatalysts is now at hand.

20.
Chem Mater ; 35(6): 2612-2623, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008408

RESUMEN

A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA