Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(17): 7145-7151, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407373

RESUMEN

Heat transfer through heterointerfaces is intrinsically hampered by a thermal boundary resistance originating from the discontinuity of the elastic properties. Here, we show that with shrinking dimensions the heat flow from an ultrathin epitaxial film through atomically flat interfaces into a single crystalline substrate is significantly reduced due to violation of Boltzmann equipartition theorem in the angular phonon phase space. For films thinner than the phonons mean free path, we find phonons trapped in the film by total internal reflection, thus suppressing heat transfer. Repopulation of those phonon states, which can escape the film through the interface by transmission and refraction, becomes the bottleneck for cooling. The resulting nonequipartition in the angular phonon phase space slows down the cooling by more than a factor of 2 compared to films governed by phonons diffuse scattering. These allow tailoring of the thermal interface conductance via manipulation of the interface.

2.
Nanotechnology ; 32(50)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34492653

RESUMEN

An unusually broad bell-shaped component (BSC) has been previously observed in surface electron diffraction on different types of 2D systems. It was suggested to be an indicator of uniformity of epitaxial graphene (Gr) and hexagonal boron nitride (hBN). In the current study we use low-energy electron microscopy and micro-diffraction to directly relate the BSC to the crystal quality of the diffracting 2D material. Specially designed lateral heterostructures were used to map the spatial evolution of the diffraction profile across different 2D materials, namely pure hBN, BCN alloy and pure Gr, where the alloy region exhibits deteriorated structural coherency. The presented results show that the BSC intensity has a minimum in the alloyed region, consequently showing that BSC is sensitive to the lateral domain size and homogeneity of the material under examination. This is further confirmed by the presence of a larger number of sharp moiré spots when the BSC is most pronounced in the pure hBN and Gr regions. Consequently, it is proposed that the BSC can be used as a diagnostic tool for determining the quality of the 2D materials.

3.
Nano Lett ; 19(7): 4594-4600, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251073

RESUMEN

When graphene is placed on a crystalline surface, the periodic structures within the layers superimpose and moiré superlattices form. Small lattice rotations between the two materials in contact strongly modify the moiré lattice parameter, upon which many electronic, vibrational, and chemical properties depend. While precise adjustment of the relative orientation in the degree- and sub-degree-range can be achieved via careful deterministic transfer of graphene, we report on the spontaneous reorientation of graphene on a metallic substrate, Ir(111). We find that selecting a substrate temperature between 1530 and 1000 K during the growth of graphene leads to distinct relative rotational angles of 0°, ± 0.6°, ±1.1°, and ±1.7°. When modeling the moiré superlattices as two-dimensional coincidence networks, we can ascribe the observed rotations to favorable low-strain graphene structures. The dissimilar thermal expansion of the substrate and graphene is regarded as an effective compressive biaxial pressure that is more easily accommodated in graphene by small rotations rather than by compression.

4.
Nano Lett ; 17(11): 6569-6574, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28945435

RESUMEN

We use subcycle time-resolved photoemission microscopy to unambiguously distinguish optically triggered electron emission (photoemission) from effects caused purely by the plasmonic field (termed "plasmoemission"). We find from time-resolved imaging that nonlinear plasmoemission is dominated by the transverse plasmon field component by utilizing a transient standing wave from two counter-propagating plasmon pulses of opposite transverse spin. From plasmonic foci on flat metal surfaces, we observe highly nonlinear plasmoemission up to the fifth power of intensity and quantized energy transfer, which reflects the quantum-mechanical nature of surface plasmons. Our work constitutes the basis for novel plasmonic devices such as nanometer-confined ultrafast electron sources as well as applications in time-resolved electron microscopy.

5.
Sci Rep ; 9(1): 19553, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863003

RESUMEN

Large, high-quality layers of hexagonal boron nitride (hBN) are a prerequisite for further advancement in scientific investigation and technological utilization of this exceptional 2D material. Here we address this demand by investigating chemical vapor deposition synthesis of hBN on an Ir(111) substrate, and focus on the substrate morphology, more specifically mono-atomic steps that are always present on all catalytic surfaces of practical use. From low-energy electron microscopy and atomic force microscopy data, we are able to set up an extended Wulff construction scheme and provide a clear elaboration of different interactions governing the equilibrium shapes of the growing hBN islands that deviate from the idealistic triangular form. Most importantly, intrinsic hBN edge energy and interaction with the iridium step edges are examined separately, revealing in such way the importance of substrate step morphology for the island structure and the overall quality of 2D materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA