Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Physiol Genomics ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037434

RESUMEN

Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared to animals aged 6 months, an increase in Mg2+ excretion was observed at 12 and 18 months. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 months of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. Additionally, urinary Mg2+ excretion and the expression of renal magnesiotropic genes was unaltered in Oit3-/- mice. For animals aged 12 and 18 months, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNAseq data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods in life, although OIT3 is unlikely to affect renal Mg2+ handling.

2.
Am J Physiol Renal Physiol ; 326(4): F622-F634, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420675

RESUMEN

Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Ratas , Animales , Bazo/metabolismo , Calcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribución Tisular , Ratas Sprague-Dawley , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/etiología , Minerales , Hígado/metabolismo , Fosfatos , Insuficiencia Renal Crónica/patología
5.
Clin Chim Acta ; 555: 117798, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280489

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) affects many people worldwide and early diagnosis is essential for successful treatment and improved outcome. Unfortunately, current methods are insufficient especially for early disease detection. However, advances in the analytical methods for urinary biomarkers may provide a unique opportunity for diagnosis and management of CKD. This review explores evolving technology and highlights the importance of early marker detection in these patients. APPROACH: A search strategy was set up using the terms CKD, biomarkers, and urine. The search included 53 studies comprising 37 biomarkers. The value of these biomarkers for CKD are based on their ability to diagnose CKD, monitor progression, assess mortality and nephrotoxicity. RESULTS: KIM-1 was the best marker for diagnosis as it increased with the development of incident CKD. DKK3 increased in patients with declining eGFR, whereas UMOD decreased in those with declining kidney function. Unfortunately, none fulfilled all criteria to adequately assess mortality and nephrotoxicity. CONCLUSION: New developments in the field of urinalysis using smart toilets may open several possibilities for urinary biomarkers. This review explored which biomarkers could be used for CKD disease detection and management.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Creatinina , Insuficiencia Renal Crónica/diagnóstico , Riñón , Biomarcadores , Urinálisis , Lesión Renal Aguda/diagnóstico , Progresión de la Enfermedad
6.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561249

RESUMEN

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Riñón/metabolismo , Ratones Noqueados , Mutación , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/farmacología , Equilibrio Hidroelectrolítico
7.
Genes Nutr ; 19(1): 2, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279093

RESUMEN

People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.

8.
Clin Kidney J ; 17(8): sfae211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099563

RESUMEN

Background: Heterozygous variants in Transient receptor potential melastatin type 7 (TRPM7), encoding an essential and ubiquitously expressed cation channel, may cause hypomagnesemia, but current evidence is insufficient to draw definite conclusions and it is unclear whether any other phenotypes can occur. Methods: Individuals with unexplained hypomagnesemia underwent whole-exome sequencing which identified TRPM7 variants. Pathogenicity of the identified variants was assessed by combining phenotypic, functional and in silico analyses. Results: We report three new heterozygous missense variants in TRPM7 (p.Met1000Thr, p.Gly1046Arg, p.Leu1081Arg) in individuals with hypomagnesemia. Strikingly, autism spectrum disorder and developmental delay, mainly affecting speech and motor skills, was observed in all three individuals, while two out of three also presented with seizures. The three variants are predicted to be severely damaging by in silico prediction tools and structural modeling. Furthermore, these variants result in a clear loss-of-function of TRPM7-mediated magnesium uptake in vitro, while not affecting TRPM7 expression or insertion into the plasma membrane. Conclusions: This study provides additional evidence for the association between heterozygous TRPM7 variants and hypomagnesemia and adds developmental delay to the phenotypic spectrum of TRPM7-related disorders. Considering that the TRPM7 gene is relatively tolerant to loss-of-function variants, future research should aim to unravel by what mechanisms specific heterozygous TRPM7 variants can cause disease.

9.
Sci Rep ; 14(1): 6917, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519529

RESUMEN

Variants in the CNNM2 gene are causative for hypomagnesaemia, seizures and intellectual disability, although the phenotypes can be variable. This study aims to understand the genotype-phenotype relationship in affected individuals with CNNM2 variants by phenotypic, functional and structural analysis of new as well as previously reported variants. This results in the identification of seven variants that significantly affect CNNM2-mediated Mg2+ transport. Pathogenicity of these variants is further supported by structural modelling, which predicts CNNM2 structure to be affected by all of them. Strikingly, seizures and intellectual disability are absent in 4 out of 7 cases, indicating these phenotypes are caused either by specific CNNM2 variant only or by additional risk factors. Moreover, in line with sporadic observations from previous reports, CNNM2 variants might be associated with disturbances in parathyroid hormone and Ca2+ homeostasis.


Asunto(s)
Proteínas de Transporte de Catión , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Magnesio/metabolismo , Convulsiones/genética , Fenotipo , Proteínas de Transporte de Catión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA