Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Radiol ; 54(1): 146-153, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010426

RESUMEN

BACKGROUND: Follow-up scoliosis radiographs are performed to assess the degree of spinal curvature and skeletal maturity, which can be done at lower radiation exposures than those in standard-dose radiography. OBJECTIVE: Describe and evaluate a protocol that reduced the radiation in follow-up frontal-view scoliosis radiographs. MATERIALS AND METHODS: We implemented a postero-anterior lower dose modified-technique for scoliosis radiography with task-based definition of adequate image quality and use of technique charts based on target exposure index and patient's height and weight. We subsequently retrospectively evaluated 40 consecutive patients who underwent a follow-up radiograph using the modified-technique after an initial standard-technique radiograph. We evaluated comparisons of proportions for subjective assessment with chi-squared tests, and agreements of reader's scores with intraclass correlation coefficients and Bland-Altman plots. We determined incident air kerma, exposure index, deviation index/standard deviation, dose-area product (DAP), and effective dose for each radiograph. We set statistical significance at P<0.05. RESULTS: Forty patients (65% female), aged 4-17 years. Median effective dose was reduced from 39 to 10 µSv (P<0.001), incident air kerma from 139 to 29 µSv (P<0.001), and DAP from 266 to 55 mGy*cm2 (P<0.001). All modified-technique parameters were rated with a mean score of acceptable or above. All modified-technique measurements obtained inter- and intra-observer correlation coefficient agreements of 0.86 ("Good") or greater. CONCLUSION: Substantial dose reduction on follow-up scoliosis imaging with existing radiography units is achievable through task-based definition of adequate image quality and tailoring of radiation to each patient's height and weight, while still allowing for reliable assessment and reproducible measurements.


Asunto(s)
Escoliosis , Humanos , Niño , Femenino , Masculino , Escoliosis/diagnóstico por imagen , Estudios Retrospectivos , Reproducibilidad de los Resultados , Radiografía , Imagenología Tridimensional/métodos
2.
J Appl Clin Med Phys ; 23(7): e13582, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35262265

RESUMEN

This study presents a methodology to develop an X-ray technique chart for portable chest and abdomen imaging which utilizes patient data available in the modality worklist (MWL) to reliably achieve a predetermined exposure index (EI) at the detector for any patient size. The method assumes a correlation between the patients' tissue equivalent thickness and the square root of the ratio of the patient's weight to height. To assess variability in detector exposures, the EI statistics for 75 chest examinations and 99 abdominal portable X-ray images acquired with the new technique chart were compared to those from a single portable unit (chest: 3877 images; abdomen: 200 images) using a conventional technique chart with three patient sizes, and to a stationary radiography room utilizing automatic exposure control (AEC) (chest: 360 images; abdomen: 112 images). The results showed that when using the new technique chart on a group of portable units, the variability in EI was significantly reduced (p < 0.01) for both AP chest and AP abdomen images compared to the single portable using a standard technique chart with three patient sizes. The variability in EI for the images acquired with the new chart was comparable to the stationary X-ray room with an AEC system (p > 0.05). This method could be used to streamline the entire imaging chain by automatically selecting an X-ray technique based on patient demographic information contained in the MWL to provide higher quality examinations to clinicians by eliminating outliers. In addition, patient height and weight can be used to estimate the patients' tissue equivalent thickness.


Asunto(s)
Intensificación de Imagen Radiográfica , Radiografía Abdominal , Abdomen/diagnóstico por imagen , Humanos , Intensificación de Imagen Radiográfica/métodos , Radiografía , Radiografía Torácica/métodos , Tórax/diagnóstico por imagen
3.
AJR Am J Roentgenol ; 211(6): 1283-1290, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30354270

RESUMEN

OBJECTIVE: The purpose of this study was to develop a road map for rapid construction of anthropomorphic phantoms from computational human phantoms for use in diagnostic imaging dosimetry studies. These phantoms are ideal for performing pregnant-patient dosimetry because the phantoms imitate the size and attenuation properties of an average-sized pregnant woman for multiple gestational periods. MATERIALS AND METHODS: The method was derived from methods and materials previously described but adapted for 3D printing technology. A 3D printer was used to transform computational models into a physical duplicate with small losses in spatial accuracy and to generate tissue-equivalent materials characterized for diagnostic energy x-rays. A series of pregnant abdomens were selected as prototypes because of their large size and complex modeling. The process involved the following steps: segmentation of anatomy used for modeling; transformation of the computational model into a printing file format; preparation, characterization, and introduction of phantom materials; and model removal and phantom assembly. RESULTS: The density of the homogenized soft tissue-equivalent substitute was optimized by combining 9.0% by weight of urethane filler powder and 91.0% urethane polymer, which resulted in a mean density of 1.041 g/cm3 measured over 20 samples. Density varied among all of the samples by 0.0026 g/cm3. The total variation in density was 0.00261 g/cm3. The half-value layer of the bone material was measured to be 1.7 mm of bone material at 120 kVp and when simulated by use of the density of the bone tissue-equivalent substitute (1.60 g/cm3) was determined to be 1.61 mm of bone tissue. For dosimetry purposes the phantom provided excellent results for evaluating a site's protocol based on scan range. CONCLUSION: The 3D printing technology is applicable to the fabrication of phantoms used for performing dosimetry. The tissue-equivalent materials used to substitute for the soft tissue were developed to be highly adaptable for optimization based on the dosimetry application. Use of this method resulted in more automated phantom construction with decreased construction time and increased out-of-slice spatial resolution of the phantoms.


Asunto(s)
Antropometría , Simulación por Computador , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Impresión Tridimensional , Radiometría , Femenino , Humanos , Embarazo
4.
Med Phys ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758726

RESUMEN

BACKGROUND: Measurement of Computed Tomography (CT) beam width is required by accrediting and regulating bodies for routine physics evaluations due to its direct correlation to patient dose. Current methods for performing CT beam width measurement require special hardware, software, and/or consumable films. Today, most 100-mm pencil chambers with a digital interface used to evaluate Computed Tomography Dose Index (CTDIvol) have a sufficiently high sampling rate to reconstruct a high-resolution dose profile for any acquisition mode. PURPOSE: The goal of this study is to measure the CT beam width from the sampled dose profile under a single helical acquisition with the 100-mm pencil chamber used for CTDIvol measurements. METHODS: The dose profiles for different scanners were measured for helical scans with varying collimation settings using a 100-mm pencil chamber placed at the isocenter and co-moving with the patient table. The measured dose profiles from the 100-mm pencil chamber were corrected for table attenuation by extracting a periodic correction function (PCF) to eliminate table interference. The corrected dose profiles were then deconvolved with the response function of the chamber to compute the beam profile. The beam width was defined by the full width half maximum (FWHM) of the resulting beam profile. Reference dose profiles were also measured using Gafchromic film for comparison. RESULTS: The beam widths, estimated using the innovative deconvolution method from the 100-mm pencil chamber, exhibit an average percentage difference of 1.6 ± 1.8 when compared with measurements obtained through Gafchromic film for beam width assessment. CONCLUSION: The proposed approach to deconvolve the pencil chamber response demonstrates the potential of obtaining the CT beam width at high accuracy without the need of special hardware, software, or consumable films. This technique can improve workflow for routine performance evaluation of CT systems.

5.
Radiol Cardiothorac Imaging ; 2(6): e200420, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33778645

RESUMEN

PURPOSE: To develop a technique that allows portable chest radiography to be performed through the glass door of a patient's room in the emergency department. MATERIALS AND METHODS: A retrospective review of 100 radiographs (50 [mean age 59.4 ± 17.3, range 22-87; 30 women] performed with the modified technique in April 2020, randomized with 50 [mean age 59 ± 21.6, range 19-100; 31 men] using the standard technique was completed by three thoracic radiologists to assess image quality. Radiation exposure estimates to patient and staff were calculated. A survey was created and sent to 32 x-ray technologists to assess their perceptions of the modified technique. Unpaired Ttests were used for numerical data. A P value < .05 was considered statistically significant. RESULTS: The entrance dose for a 50th percentile patient was the same between techniques, measuring 169 µGy. The measured technologist exposure from the modified technique assuming a 50th percentile patient and standing 6 feet to the side of the glass was 0.055 µGy, which was lower than standard technique technologist exposure of 0.088 µGy. Of the 100 portable chest radiographs evaluated by three reviewers, two reviewers rated all images as having diagnostic quality, while the other reviewer believed two of the standard images and one of the modified technique images were non-diagnostic. A total of 81% (26 of 32) of eligible technologists completed the survey. Results showed acceptance of the modified technique with the majority feeling safer and confirming conservation of PPE. Most technologists did not feel the modified technique was more difficult to perform. CONCLUSIONS: The studies acquired with the new technique remained diagnostic, patient radiation doses remained similar, and technologist dose exposure were decreased with modified positioning. Perceptions of the new modified technique by frontline staff were overwhelmingly positive.

6.
Med Phys ; 42(3): 1268-79, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25735282

RESUMEN

PURPOSE: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. METHODS: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 µm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 µm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm(3) Radcal(®) thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm(3) calibrated ionization chamber to measure the reference air kerma. RESULTS: Each detector exhibited counting losses of 5% when irradiated at a dose rate of 26.3 mGy/s (Gadolinium) and 324.3 mGy/s (plastic). The dead time of the gadolinium oxysulfide detector was determined to be 48 ns, while the dead time of the plastic scintillating detector was unable to accurately be calculated due to poor counting statistics from low detected count rates. Noticeable depth/energy dependence was observed for the plastic scintillator for depths greater than 16 cm of acrylic that was not present for measurements using the gadolinium oxysulfide scintillator, leading us to believe that quenching may play a larger role in the depth dependence of the plastic scintillator than the incident x-ray energy spectrum. When properly corrected for dead time effects, the energy response of the gadolinium oxysulfide scintillator is consistent with the plastic scintillator. Using the integrated dual detector method was superior to each detector individually as the depth-dependent measure of dose was correctable to less than 8% between 100 and 135 kV. CONCLUSIONS: The dual scintillator fiber-optic detector accommodates a methodology for energy dependent corrections of the plastic scintillator, improving the overall accuracy of the dosimeter across the range of diagnostic energies.


Asunto(s)
Fibras Ópticas , Conteo por Cintilación/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Electrones , Método de Montecarlo , Fantasmas de Imagen , Fotones
8.
Med Phys ; 40(1): 013901, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23298124

RESUMEN

PURPOSE: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. METHODS: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of the University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of the University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at the University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. RESULTS: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. CONCLUSIONS: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.


Asunto(s)
Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X/instrumentación , Adulto , Humanos , Lactante , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA