Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Exp Metastasis ; 30(3): 317-32, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23053744

RESUMEN

Tumour cells can find in bone marrow (BM) a niche rich in growth factors and cytokines that promote their self-renewal, proliferation and survival. In turn, tumour cells affect the homeostasis of the BM and bone, as well as the balance among haematopoiesis, osteogenesis, osteoclastogenesis and bone-resorption. As a result, growth and survival factors normally sequestered in the bone matrix are released, favouring tumour development. Mesenchymal stem cells (MSCs) from BM can become tumour-associated fibroblasts, have immunosuppressive function, and facilitate metastasis by epithelial-to-mesenchymal transition. Moreover, MSCs generate osteoblasts and osteocytes and regulate osteoclastogenesis. Therefore, MSCs can play an important pro-tumorigenic role in the formation of a microenvironment that promotes BM and bone metastasis. In this study we showed that BM MSCs from untreated advanced breast and lung cancer patients, without bone metastasis, had low osteogenic and adipogenic differentiation capacity compared to that of healthy volunteers. In contrast, chondrogenic differentiation was increased. Moreover, MSCs from patients had lower expression of CD146. Finally, our data showed higher levels of Dkk-1 in peripheral blood plasma from patients compared with healthy volunteers. Because no patient had any bone disorder by the time of the study we propose that the primary tumour altered the plasticity of MSCs. As over 70 % of advanced breast cancer patients and 30-40 % of lung cancer patients will develop osteolytic bone metastasis for which there is no total cure, our findings could possibly be used as predictive tools indicating the first signs of future bone disease. In addition, as the MSCs present in the BM of these patients may not be able to regenerate bone after the tumour cells invasion into BM/bone, it is possible that they promote the cycle between tumour cell growth and bone destruction.


Asunto(s)
Médula Ósea/patología , Neoplasias de la Mama/patología , Neoplasias Pulmonares/patología , Células Madre Mesenquimatosas/patología , Neoplasias Óseas/secundario , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Osteólisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Stem Cells ; 25(4): 1047-54, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17420228

RESUMEN

Bone marrow (BM)-derived adult mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into different cell lines. This makes them a likely source for application in tissue repair therapies. Here, we report evidence indicating that, both in vivo and in vitro, IMT504, the prototype of the PyNTTTTGT class of immunostimulatory oligonucleotides, significantly increases the number of fibroblast colony-forming units (CFU-Fs) that originate MSCs. When rat BM cells were cultured with IMT504, the mean number of CFU-Fs increased about three times as compared with untreated controls (CFU-F: 19 +/- 6.3 vs. 6.8 +/- 2.0/2 x 10(6) seeded BM cells, p = .03). Furthermore, rats inoculated with IMT504 had a significantly higher number of CFU-Fs both in BM (CFU-F: 124 +/- 33 vs. 38 +/- 17/femur, p = .04) and in peripheral blood (animals with detectable CFU-Fs in circulation 8/12 vs. 2/12, p = .04) as compared with untreated animals. On the other hand, BM-derived adherent cells either treated in vitro with IMT504 or obtained from animals injected with IMT504 possess the capacity to differentiate to the osteogenic and adipogenic cell lineages as regular MSCs. Finally, we found that repair of a bone defect was accelerated in rats injected with IMT504 as compared with control animals (area with consolidated bone: 80% +/- 6.4% vs. 49% +/- 3.5%, p = .03, n = 10 rats per group). Importantly, when two human BM were cultured in the presence of IMT504, the mean number of fibroblastic adherent colonies also increased as compared with controls. These results suggest the possibility of clinical use of IMT504 in bone, and presumably other, tissue repair therapies.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Oligodesoxirribonucleótidos/farmacología , Trasplante de Células Madre , Animales , Secuencia de Bases , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , División Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA