Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Laryngoscope ; 134(4): 1564-1571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37597166

RESUMEN

OBJECTIVES: We examined sinus mucosal samples recovered from pediatric chronic rhinosinusitis (CRS) patients for the presence of Z-form extracellular DNA (eDNA) due to its recently elucidated role in pathogenesis of disease. Further, we immunolabeled these specimens for the presence of both members of the bacterial DNA-binding DNABII protein family, integration host factor (IHF) and histone-like protein (HU), due to their known role in converting common B-DNA to the rare Z-form. METHODS: Sinus mucosa samples recovered from 20 patients during functional endoscopic sinus surgery (FESS) were immunolabelled for B- and Z-DNA, as well as for both bacterial DNABII proteins. RESULTS: Nineteen of 20 samples (95%) included areas rich in eDNA, with the majority in the Z-form. Areas positive for B-DNA were restricted to the most distal regions of the mucosal specimen. Labeling for both DNABII proteins was observed on B- and Z-DNA, which aligned with the role of these proteins in the B-to-Z DNA conversion. CONCLUSIONS: Abundant Z-form eDNA in culture-positive pediatric CRS samples suggested that bacterial DNABII proteins were responsible for the conversion of eukaryotic B-DNA that had been released into the luminal space by PMNs during NETosis, to the Z-form. The presence of both DNABII proteins on B-DNA and Z-DNA supported the known role of these bacterial proteins in the B-to-Z DNA conversion. Given that Z-form DNA both stabilizes the bacterial biofilm and inactivates PMN NET-mediated killing of trapped bacteria, we hypothesize that this conversion may be contributing to the chronicity and recalcitrance of CRS to treatment. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1564-1571, 2024.


Asunto(s)
ADN Forma B , ADN de Forma Z , Rinitis , Sinusitis , Humanos , Niño , Factores de Integración del Huésped , Biopelículas , Sinusitis/cirugía , Enfermedad Crónica , Rinitis/cirugía
2.
Biofilm ; 4: 100096, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36532267

RESUMEN

The biofilm state is the preferred lifestyle of bacteria in nature. Within a biofilm, the resident bacteria are protected from environmental stresses, antibiotics and other antimicrobials, including those due to multiple immune effectors of their host during conditions of disease. Thereby, biofilms contribute significantly to pathogenicity, recalcitrance to clearance and chronicity/recurrence of bacterial diseases, including diseases of the respiratory tract. In the absence of highly effective, biofilm-targeted therapeutics, antibiotics are commonly prescribed to attempt to treat these diseases, however, in light of the canonical resistance of biofilm-resident bacteria to antibiotic-mediated killing, this ineffectual practice often fails to resolve the diseased condition and contributes significantly to the global threat of rising antimicrobial resistance. Nontypeable Haemophilus influenzae is a common respiratory tract disease co-pathogen, often present in partnership with other airway pathogens. Herein we aspired to determine whether either of two monoclonal antibodies we developed, one specific for NTHI [directed against the majority subunit (PilA) of the type IV pilus (T4P) of NTHI] and the other able to act agnostically on all bacteria tested to date (directed against a structural protein of the biofilm matrix, a DNABII protein), were able to disrupt 2-genera biofilms wherein NTHI co-partnered with another respiratory tract pathogen. These monoclonals were tested singly as well as when within an antibody cocktail. The monoclonal directed against the NTHI antigen PilA was only effective on single species NTHI biofilms and not on single species biofilms formed by other unrelated species. However, when NTHI co-partnered with any of 5 respiratory tract pathogens tested here (Burkholderia cenocepacia, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae or Moraxella catarrhalis), this exclusively NTHI-directed monoclonal was able to disrupt these 2-genera biofilms. Conversely, the monoclonal antibody directed against protective epitopes of a DNABII protein, significantly disrupted all single species and 2-genera biofilms, which reflected the universal presence of this structural protein in all tested biofilm matrices. However, greatest release of both pathogens from a 2-genera biofilm was uniformly achieved by incubation with a 1:1 cocktail of both monoclonals. These data support the use of an approach wherein patients with respiratory tract disease could be treated with a therapeutic monoclonal antibody cocktail to release NTHI and its common co-pathogens from the protective biofilm to be killed by either traditional antibiotics and/or host immune effectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA