Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Anal Chem ; 96(4): 1530-1537, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38226588

RESUMEN

The difficulty associated with accurately measuring the height of the back peak (Ipb) in cyclic voltammetry (CV) has long plagued electrochemists. Most commonly, Ipb is measured by extrapolating a linear fit from a selected region of a voltammogram after the switching potential (Eλ), but without substantial separation between the peak potential (Ep) and Eλ, this approach always overestimates the background current and so underestimates Ipb. Moreover, experimental conditions can present challenges for this method as an appropriate region for linear fitting is often lacking due to neighboring peaks or solvent electrolysis current. Here, we present a new method for finding the baseline current for the back peak in CV experiments. By examining the CV data as a function of time rather than potential, it is possible to fit a generalized Cottrell or Shoup-Szabo equation to the current decay of the forward peak and extrapolate this function as a baseline for the return peak. This approach was tested by using simulated and experimental data in a variety of conditions, including data demonstrating linear and radial diffusional control. We found that the method allows for more accurate determination of back peak currents, especially when linear fits are complicated by narrow electrochemical windows or radial diffusion. A user-friendly Python program was written to automatically find an appropriate fitting range for this analysis and measure peak currents. We have made this program available to the electrochemical community at large.

2.
Chemistry ; : e202401233, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825747

RESUMEN

The reaction of Re(CO)5Br with deprotonated 1H-(5-(2,2':6',2''-terpyridine)pyrid-2-yl)tetrazole yields a triangular assembly formed by tricarbonyl Re(I) vertices. Photophysical measurements reveal blue-green emission with a maximum at 520 nm, 32% quantum yield, and 2430 ns long-lived excited state decay lifetime in deaerated dichloromethane solution. Coordination of lanthanoid ions to the terpyridine units red-shifts the emission to 570 nm and also reveals efficient (90%) and fast sensitisation to both Eu(III) and Yb(III) at room temperature, with a similar rate constant kET of the order of 107 s-1. Efficient sensitisation of Eu(III) from Re(I) is unprecedented, especially when considering the close proximity in energy between the donor and acceptor excited states. On the other hand, comparative measurements at 77 K reveal that energy transfer to Yb(III) is two orders of magnitude slower than that to Eu(III). A two-step mechanism of sensitisation is therefore proposed, whereby the rate-determining step is a thermally activated energy transfer step between the Re(I) centre and the terpyridine functionality, followed by rapid energy transfer to the respective Ln(III) excited states. At 77 K, the direct Re(I) to Eu(III) energy transfer seems to proceed via a ligand-mediated superexchange Dexter-type mechanism.

3.
Inorg Chem ; 60(14): 10323-10339, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34197094

RESUMEN

We report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF4, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with ΦPL of up to 35%, and in solution, with ΦPL of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % Vbur of the P^P ligand. The most emissive complexes were used to fabricate both organic light-emitting diodes and light-emitting electrochemical cells (LECs), both of which showed moderate performance. Compared to the benchmark copper(I)-based LECs, [Cu(dnbp)(DPEPhos)]+ (maximum external quantum efficiency, EQEmax = 16%), complex 3 (EQEmax = 1.85%) showed a much longer device lifetime (t1/2 = 1.25 h and >16.5 h for [Cu(dnbp)(DPEPhos)]+ and complex 3, respectively). The electrochemiluminescence (ECL) properties of several complexes were also studied, which, to the best of our knowledge, constitutes the first ECL study for heteroleptic copper(I) complexes. Notably, complexes exhibiting more reversible electrochemistry were associated with higher annihilation ECL as well as better performance in a LEC.

4.
Inorg Chem ; 59(5): 2765-2770, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32073834

RESUMEN

The reaction between trans-[AuF2(pyridine)2]+ and [PhI(pyridine)2]2+ results in the formation of PhIF2 and [Au(pyridine)4]3+. Investigation of the reaction pathway using model Pd and Pt analogues of the gold complex indicate that the most likely mechanism is attack by the Au-F onto the I(III), rather than a redox process. This demonstrates that the Au(III)-F fragment can behave in a nucleophilic manner even in a relatively electron-poor cationic complex.

5.
Phys Chem Chem Phys ; 20(28): 18995-19006, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29971279

RESUMEN

Previously reported annihilation ECL of mixtures of metal complexes have generally comprised Ir(ppy)3 or a close analogue as a higher energy donor/emitter (green/blue light) and [Ru(bpy)3]2+ or its derivative as a lower energy acceptor/emitter (red light). In contrast, here we examine Ir(ppy)3 as the lower energy acceptor/emitter, by combining it with a second Ir(iii) complex: [Ir(df-ppy)2(ptb)]+ (where ptb = 1-benzyl-1,2,3-triazol-4-ylpyridine). The application of potentials sufficient to attain the first single-electron oxidation and reduction products can be exploited to detect Ir(ppy)3 at orders of magnitude lower concentration, or enhance its maximum emission intensity at high concentration far beyond that achievable through conventional annihilation ECL of Ir(ppy)3 involving comproportionation. Moreover, under certain conditions, the colour of the emission can be selected through the applied electrochemical potentials. We have also prepared a novel Ir(iii) complex with a sufficiently low reduction potential that the reaction between its reduced form and Ir(ppy)3+ cannot populate the excited state of either luminophore. This enabled, for the first time, the exclusive formation of either excited state through the application of higher cathodic or anodic potentials, but in both cases, the ECL was greatly diminished by parasitic dark reactions.

6.
J Am Chem Soc ; 139(41): 14605-14610, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28914532

RESUMEN

We report the electrochemiluminescence properties of square-planar Pt(II) complexes that result from the formation of supramolecular nanostructures. We define this new phenomenon as aggregation-induced electrochemiluminescence (AIECL). In this system, self-assembly changes the HOMO and LUMO energies, making their population accessible via ECL pathways and leading to the generation of the luminescent excited state. Significantly, the emission from the self-assembled system is the first example of electrochemiluminescence (ECL) of Pt(II) complexes in aqueous solution having higher efficiency than the standard, Ru(bpy)32+.The finding can lead to a new generation of bright emitters that can be used as ECL labels.

7.
Molecules ; 22(12)2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29207549

RESUMEN

Fluorescent dyes with aggregation-induced emission (AIE) properties exhibit intensified emission upon aggregation. They are promising candidates to study biomolecules and cellular changes in aqueous environments when aggregation formation occurs. Here, we report a group of 9-position functionalized anthracene derivatives that were conveniently synthesized by the palladium-catalyzed Heck reaction. Using fluorometric analyses, these dyes were confirmed to show AIE behavior upon forming aggregates at high concentrations, in viscous solvents, and when poorly solubilized. Their photophysical properties were then further correlated with their structural features, using density functional theory (DFT) calculation. Finally, we demonstrated their potential applications in monitoring pH changes, quantifying globular proteins, as well as cell imaging with confocal microscopy.


Asunto(s)
Antracenos/química , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Microscopía Confocal
8.
Angew Chem Int Ed Engl ; 56(29): 8473-8480, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28429451

RESUMEN

We report the first example of an alkene with two carbon-bound substituents (imidazole and imidazolium rings) where the Z-isomer has a greater thermodynamic stability than the E-isomer which persists in both the gas phase and in solution. Theoretical calculations, solution fluorescence spectroscopy and gas-phase ion mobility mass spectrometry studies confirm the preference for the Z-isomer, the stability of which is traced to a non-covalent interaction between the imidazole lone pair and the imidazolium ring.

9.
Analyst ; 141(1): 62-9, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26525583

RESUMEN

The introduction of a 'co-reactant' was a critical step in the evolution of electrogenerated chemiluminescence (ECL) from a laboratory curiosity to a widely utilised detection system. In conjunction with a suitable electrochemiluminophore, the co-reactant enables generation of both the oxidised and reduced precursors to the emitting species at a single electrode potential, under the aqueous conditions required for most analytical applications. The most commonly used co-reactant is tri-n-propylamine (TPrA), which was developed for the classic tris(2,2'-bipyridine)ruthenium(II) ECL reagent. New electrochemiluminophores such as cyclometalated iridium(III) complexes are also evaluated with this co-reactant. However, attaining the excited states in these systems can require much greater energy than that of tris(2,2'-bipyridine)ruthenium(II), which has implications for the co-reactant reaction pathways. In this tutorial review, we describe a simple graphical approach to characterise the energetically feasible ECL pathways with TPrA, as a useful tool for the development of new ECL detection systems.

10.
Inorg Chem ; 55(6): 2830-9, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26930516

RESUMEN

In this paper we report on the use of [NO][BF4] to access tricationic tetrakis(pyridine)gold(III) from Au powder, a species inaccessible using the more traditional (tetrahydrothiophene)AuCl route. It is then demonstrated that this family of compounds can be used to access new terminal Au(III) hydroxides, a challenging class of compounds, and the first crystallographically characterized examples employing bidentate ligands. Finally, preliminary biological studies indicate good activity for derivatives featuring polydentate ligands against the HeLa and PC3 cell lines but also strong inhibition of primary HUVEC cells.


Asunto(s)
Oro/química , Compuestos Inorgánicos/farmacología , Piridinas/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidróxidos/química , Espectrofotometría Ultravioleta
11.
Biochim Biophys Acta ; 1838(11): 2939-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25128153

RESUMEN

Lipid-mimetic metallosurfactant based luminophores are promising candidates for labeling phospholipid membranes without altering their biophysical characteristics. The metallosurfactants studied exhibit high structural and physicochemical similarity to phospholipid molecules, designed to incorporate into the membrane structure without the need for covalent attachment to a lipid molecule. In this work, two lipid-mimetic phosphorescent metal complexes are described: [Ru(bpy)2(dn-bpy)](2+) and [Ir(ppy)2(dn-bpy)](+) where bpy is 2,2'-bipyridine, dn-bpy is 4,4'-dinonyl-2,2'-bipyridine and ppy is 2-phenylpyridine. Apart from being lipid-mimetic in size, shape and physical properties, both complexes exhibit intense photoluminescence and enhanced photostability compared with conventional organic fluorophores, allowing for prolonged observation. Moreover, the large Stokes shift and long luminescence lifetime associated with these complexes make them more suitable for spectroscopic studies. The complexes are easily incorporated into dimyristoil-phosphatidyl-choline (DMPC) liposomes by mixing in the organic solvent phase. DLS reveals the labeled membranes form liposomes of similar size to that of neat DMPC membrane. Synchrotron Small-Angle X-ray Scattering (SAXS) measurements confirmed that up to 5% of either complex could be incorporated into DMPC membranes without producing any structural changes in the membrane. Fluorescence microscopy reveals that 0.5% label content is sufficient for imaging. Atomic Force Microscopic imaging confirms that liposomes of the labeled bilayers on a mica surface can fuse into a flat lamellar membrane that is morphologically identical to neat lipid membranes. These results demonstrate the potential of such lipid-mimetic luminescent metal complexes as a new class of labels for imaging lipid membranes.

12.
Chemistry ; 21(8): 3377-86, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25588368

RESUMEN

The attempted synthesis of NHC-stabilized dicarbon (NHC=C=C=NHC) through deprotonation of a doubly protonated precursor ([NHC-CH=CH-NHC](2+) ) is reported. Rather than deprotonation, a clean reduction to NHC=CH-CH=NHC is observed with a variety of bases. The apparent resistance towards deprotonation to the target compound led to a reinvestigation of the electronic structure of NHC→CC←NHC, which showed that the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) gap is likely too small to allow for isolation of this species. This is in contrast to the recent isolation of the cyclic alkylaminocarbene analogue (cAAC=C=C=cAAC), which has a large HOMO-LUMO gap. A detailed theoretical study illuminates the differences in electronic structures between these molecules, highlighting another case of the potential advantages of using cAAC rather than NHC as a ligand. The bonding analysis suggests that the dicarbon compounds are well represented in terms of donor-acceptor interactions L→C2 ←L (L=NHC, cAAC).

13.
Analyst ; 140(21): 7142-5, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26347905

RESUMEN

A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.


Asunto(s)
Electroquímica/métodos , Electrólitos/química , Luminiscencia , Rutenio/química , 2,2'-Dipiridil/química , Aminas , Tampones (Química) , Técnicas de Química Analítica , Electrodos , HEPES/química , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Mediciones Luminiscentes , Modelos Químicos , Fosfatidilserinas/química , Piperazinas/química , Solubilidad , Ácidos Sulfónicos/química , Trometamina/análogos & derivados , Trometamina/química
14.
J Am Chem Soc ; 136(35): 12415-21, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25116433

RESUMEN

We report the first examples of Au(III) tricationic complexes bound only by neutral monodentate ligands, which are a new class of gold reagents. Oxidative addition to the bis-pyridine Au(I) cation, [Au(4-DMAP)2](+), using a series of dicationic I(III) oxidants of the general form [PhI(L)2](2+) (L = pyridine, 4-DMAP, 4-cyanopyridine) allows ready access to homoleptic and pseudo-homoleptic Au(III) complexes [Au(4-DMAP)2(L)2](3+). The facile oxidative addition of Au(I) species additionally demonstrates the efficacy of PhI(L)2](2+) reagents as halide-free oxidants for Au(I). Comparisons are made via attempts to oxidize NHC-Au(I)Cl, where introduction of the chloride anion results in complex mixtures via ligand and chloride exchange, demonstrating the advantage of using the pyridine-based homoleptic compounds. The new Au(III) trications show intriguing reactivity with water, yielding dinuclear oxo-bridged and rare terminal Au(III)-OH complexes.

15.
Anal Chem ; 86(5): 2727-32, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24512565

RESUMEN

Exploiting the distinct excitation and emission properties of concomitant electrochemiluminophores in conjunction with the inherent color selectivity of a conventional digital camera, we create a new strategy for multiplexed electrogenerated chemiluminescence detection, suitable for the development of low-cost, portable clinical diagnostic devices. Red, green and blue emitters can be efficiently resolved over the three-dimensional space of ECL intensity versus applied potential and emission wavelength. As the relative contribution ratio of each emitter to the photographic RGB channels is constant, the RGB ECL intensity versus applied-potential curves could be effectively isolated to a single emitter at each potential.

16.
Chemistry ; 20(43): 14026-31, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25204830

RESUMEN

We demonstrate a new approach to manipulate the selective emission in mixed electrogenerated chemiluminescence (ECL) systems, where subtle changes in co-reactant properties are exploited to control the relative electron-transfer processes of excitation and quenching. Two closely related tertiary-amine co-reactants, tri-n-propylamine and N,N-diisopropylethylamine, generate remarkably different emission profiles: one provides distinct green and red ECL from [Ir(ppy)3] (ppy=2-phenylpyridinato-C2,N) and a [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) derivative at different applied potentials, whereas the other generates both emissions simultaneously across a wide potential range. These phenomena can be rationalized through the relative exergonicities of electron-transfer quenching of the excited states, in conjunction with the change in concentration of the quenchers over the applied potential range.


Asunto(s)
2,2'-Dipiridil/química , Etilaminas/química , Iridio/química , Propilaminas/química , Rutenio/química , Color , Técnicas Electroquímicas , Luminiscencia , Mediciones Luminiscentes
17.
Chemistry ; 20(12): 3322-32, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24591091

RESUMEN

Compared to tris(2-phenylpyridine)iridium(III) ([Ir(ppy)3 ]), iridium(III) complexes containing difluorophenylpyridine (df-ppy) and/or an ancillary triazolylpyridine ligand [3-phenyl-1,2,4-triazol-5-ylpyridinato (ptp) or 1-benzyl-1,2,3-triazol-4-ylpyridine (ptb)] exhibit considerable hypsochromic shifts (ca. 25-60 nm), due to the significant stabilising effect of these ligands on the HOMO energy, whilst having relatively little effect on the LUMO. Despite their lower photoluminescence quantum yields compared with [Ir(ppy)3 ] and [Ir(df-ppy)3 ], the iridium(III) complexes containing triazolylpyridine ligands gave greater electrogenerated chemiluminescence (ECL) intensities (using tri-n-propylamine (TPA) as a co-reactant), which can in part be ascribed to the more energetically favourable reactions of the oxidised complex (M(+) ) with both TPA and its neutral radical oxidation product. The calculated iridium(III) complex LUMO energies were shown to be a good predictor of the corresponding M(+) LUMO energies, and both HOMO and LUMO levels are related to ECL efficiency. The theoretical and experimental data together show that the best strategy for the design of efficient new blue-shifted electrochemiluminophores is to aim to stabilise the HOMO, while only moderately stabilising the LUMO, thereby increasing the energy gap but ensuring favourable thermodynamics and kinetics for the ECL reaction. Of the iridium(III) complexes examined, [Ir(df-ppy)2 (ptb)](+) was most attractive as a blue-emitter for ECL detection, featuring a large hypsochromic shift (λmax =454 and 484 nm), superior co-reactant ECL intensity than the archetypal homoleptic green and blue emitters: [Ir(ppy)3 ] and [Ir(df-ppy)3 ] (by over 16-fold and threefold, respectively), and greater solubility in polar solvents.

18.
Inorg Chem ; 53(1): 468-77, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24341386

RESUMEN

A versatile and straightforward synthetic approach is described for the preparation of triamide bearing analogues of sarcophagine hexaazamacrobicyclic cage ligands without the need for a templating metal ion. Reaction of 1,1,1-tris(aminoethyl)ethane (tame) with 3 equiv of 2-chloroacetyl chloride, yields the tris(α-chloroamide) synthetic intermediate 6, which when treated with either 1,1,1-tris(aminoethyl)ethane or 1,4,7-triazacyclononane furnished two novel triamidetriamine cryptand ligands (7 and 8 respectively). The Co(III) and Cu(II) complexes of cryptand 7 were prepared; however, cryptand 8 could not be metalated. The cryptands and the Co(III) complex 9 have been characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. These studies confirm that the Co(III) complex 9 adopts an octahedral geometry with three facial deprotonated amido-donors and three facial amine donor groups. The Cu(II) complex 10 was characterized by elemental analysis, single crystal X-ray crystallography, cyclic voltammetry, and UV-visible absorption spectroscopy. In contrast to the Co(III) complex (9), the Cu(II) center adopts a square planar coordination geometry, with two amine and two deprotonated amido donor groups. Compound 10 exhibited a quasi-reversible, one-electron oxidation, which is assigned to the Cu(2+/3+) redox couple. These cryptands represent interesting ligands for radiopharmaceutical applications, and 7 has been labeled with (64)Cu to give (64)Cu-10. This complex showed good stability when subjected to L-cysteine challenge whereas low levels of decomplexation were evident in the presence of L-histidine.


Asunto(s)
Radioisótopos de Cobre/química , Compuestos Organometálicos/síntesis química , Radiofármacos/síntesis química , Radioisótopos de Cobre/aislamiento & purificación , Cristalografía por Rayos X , Ligandos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/aislamiento & purificación , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/aislamiento & purificación , Radiofármacos/química , Radiofármacos/aislamiento & purificación
19.
Environ Sci Technol ; 48(18): 10835-42, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25157830

RESUMEN

The redox properties of Fe(II) adsorbed onto mineral surfaces have been highly studied over recent years due to the wide range of environmental contaminants that react with this species via abiotic processes. In this work the reactivity of Fe(II) adsorbed onto hydrous ferric oxide (HFO) has been studied using ferrocene (bis-cyclopentadienyl iron(II); Fc) derivatives as electron shuttles in cyclic voltammetry (CV) experiments. The observed amplification of the ferrocene oxidation peak in CV is attributed to reaction between the electrochemically generated ferrocenium (Fc(+)) ion and adsorbed Fe(II) species in a catalytic process (EC' mechanism). pH dependence studies show that the reaction rate increases with Fe(II) adsorption and is maintained in the absence of aqueous Fe(2+), providing strong evidence that the electron transfer process involves the adsorbed species. The rate of reaction between Fc(+) and adsorbed Fe(II) increases with the redox potential of the ferrocene derivative, as expected, with bimolecular rate constants in the range 10(3)-10(5) M(-1) s(-1). The ferrocene-mediated electrochemical method described has considerable promise in the development of a technique for measuring electron-transfer rates in geochemical and environmental systems.


Asunto(s)
Electrones , Compuestos Férricos/química , Hierro/química , Adsorción , Electroquímica , Electrodos , Compuestos Ferrosos/química , Concentración de Iones de Hidrógeno , Metalocenos , Oxidación-Reducción
20.
Chem Commun (Camb) ; 60(43): 5586-5589, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38699786

RESUMEN

The synthesis and structural characterization of an electron poor Au(III) trication bearing 2 imidazole and 2 acetonitrile ligands is described. The new complex is capable of aryl C-H metalation with the formation of a monomesitylene complex and also demonstrated to be highly oxidizing in the rapid room temperature conversion of cyclohexene to benzene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA