Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118812, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561121

RESUMEN

Several studies have linked air pollution to COVID-19 morbidity and severity. However, these studies do not account for exposure levels to SARS-CoV-2, nor for different sources of air pollution. We analyzed individual-level data for 8.3 million adults in the Netherlands to assess associations between long-term exposure to ambient air pollution and SARS-CoV-2 infection (i.e., positive test) and COVID-19 hospitalisation risks, accounting for spatiotemporal variation in SARS-CoV-2 exposure levels during the first two major epidemic waves (February 2020-February 2021). We estimated average annual concentrations of PM10, PM2.5 and NO2 at residential addresses, overall and by PM source (road traffic, industry, livestock, other agricultural sources, foreign sources, other Dutch sources), at 1 × 1 km resolution, and weekly SARS-CoV-2 exposure at municipal level. Using generalized additive models, we performed interval-censored survival analyses to assess associations between individuals' average exposure to PM10, PM2.5 and NO2 in the three years before the pandemic (2017-2019) and COVID-19-outcomes, adjusting for SARS-CoV-2 exposure, individual and area-specific confounders. In single-pollutant models, per interquartile (IQR) increase in exposure, PM10 was associated with 7% increased infection risk and 16% increased hospitalisation risk, PM2.5 with 8% increased infection risk and 18% increased hospitalisation risk, and NO2 with 3% increased infection risk and 11% increased hospitalisation risk. Bi-pollutant models suggested that effects were mainly driven by PM. Associations for PM were confirmed when stratifying by urbanization degree, epidemic wave and testing policy. All emission sources of PM, except industry, showed adverse effects on both outcomes. Livestock showed the most detrimental effects per unit exposure, whereas road traffic affected severity (hospitalisation) more than infection risk. This study shows that long-term exposure to air pollution increases both SARS-CoV-2 infection and COVID-19 hospitalisation risks, even after controlling for SARS-CoV-2 exposure levels, and that PM may have differential effects on these COVID-19 outcomes depending on the emission source.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Exposición a Riesgos Ambientales , Material Particulado , COVID-19/epidemiología , Humanos , Países Bajos/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Masculino , Femenino , Material Particulado/análisis , Persona de Mediana Edad , Anciano , Adulto , Incidencia , Estudios de Cohortes , SARS-CoV-2 , Dióxido de Nitrógeno/análisis , Hospitalización/estadística & datos numéricos
2.
Int J Hyg Environ Health ; 259: 114382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652943

RESUMEN

Air pollution is a known risk factor for several diseases, but the extent to which it influences COVID-19 compared to other respiratory diseases remains unclear. We performed a test-negative case-control study among people with COVID-19-compatible symptoms who were tested for SARS-CoV-2 infection, to assess whether their long- and short-term exposure to ambient air pollution (AAP) was associated with testing positive (vs. negative) for SARS-CoV-2. We used individual-level data for all adult residents in the Netherlands who were tested for SARS-CoV-2 between June and November 2020, when only symptomatic people were tested, and modeled ambient concentrations of PM10, PM2.5, NO2 and O3 at geocoded residential addresses. In long-term exposure analysis, we selected individuals who did not change residential address in 2017-2019 (1.7 million tests) and considered the average concentrations of PM10, PM2.5 and NO2 in that period, and different sources of PM (industry, livestock, other agricultural activities, road traffic, other Dutch sources, foreign sources). In short-term exposure analysis, individuals not changing residential address in the two weeks before testing day (2.7 million tests) were included in the analyses, thus considering 1- and 2-week average concentrations of PM10, PM2.5, NO2 and O3 before testing day as exposure. Mixed-effects logistic regression analysis with adjustment for several confounders, including municipality and testing week to account for spatiotemporal variation in viral circulation, was used. Overall, there was no statistically significant effect of long-term exposure to the studied pollutants on the odds of testing positive vs. negative for SARS-CoV-2. However, significant positive associations of long-term exposure to PM10 and PM2.5 from specifically foreign and livestock sources, and to PM10 from other agricultural sources, were observed. Short-term exposure to PM10 (adjusting for NO2) and PM2.5 were also positively associated with increased odds of testing positive for SARS-CoV-2. While these exposures seemed to increase COVID-19 risk relative to other respiratory diseases, the underlying biological mechanisms remain unclear. This study reinforces the need to continue to strive for better air quality to support public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Material Particulado , SARS-CoV-2 , Humanos , Países Bajos/epidemiología , COVID-19/epidemiología , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Estudios de Casos y Controles , Masculino , Persona de Mediana Edad , Contaminantes Atmosféricos/análisis , Femenino , Adulto , Factores de Riesgo , Material Particulado/análisis , Anciano , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA