Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Ecol ; 78(4): 1030-1034, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30929045

RESUMEN

Fecal specimen collection in the clinical setting is often unfeasible for large population studies, especially because cancer patients on immunotherapy often experience constipation. A method for constructing and using an at-home stool collection kit designed for epidemiological studies in cancer patients is presented. Participation and compliance rates of the collection kit among late-stage cancer patients from an ongoing, longitudinal study are also discussed. The kit includes three different media on which samples are introduced. Using one stool sample, patients collect specimens by smearing stool onto a fecal occult blood test (FOBT) card, containing three slides for collection. Additional specimens from the same stool sample are added to one tube containing 8 mL of RNAlater preservative and one tube containing 8 mL of 95% ethanol. Stool specimens are stored at room temperature and returned to researchers within 3 days of collection. The purpose of this kit is to yield stool specimens on a variety of media that can be preserved for extended periods of time at room temperature and are compatible with multi-omics approaches for specimen analysis. According to leading microbiome researchers and published literature, each collection method is considered optimal for use in large epidemiological studies. Moreover, the kit is comprised of various components that make stool collection easy, so as not to burden the patient and hence maximize overall compliance. Use of this kit in a study of late-stage lung cancer patients had a participation rate of 83% and baseline compliance rate of 58%.


Asunto(s)
Heces/microbiología , Microbiota , Neoplasias/microbiología , Manejo de Especímenes/métodos , Humanos , Manejo de Especímenes/instrumentación
2.
Genome Med ; 14(1): 35, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35346337

RESUMEN

BACKGROUND: Recent studies show that human gut microbial composition can determine whether a patient is a responder or non-responder to immunotherapy but have not identified a common microbial signal shared by responding patients. The functional relationship between immunity, intestinal microbiota, and NSCLC response to immune checkpoint inhibitor/inhibition (ICI) in an American cohort remains unexplored. METHODS: RNAlater-preserved fecal samples were collected from 65 pre-treatment (baseline) and post-treatment stage III/IV NSCLC patients undergoing ICI therapy, categorized as responders or non-responders according to RECIST criteria. Pooled and individual responder and non-responder microbiota were transplanted into a gnotobiotic mouse model of lung cancer and treated with ICIs. 16S rDNA and RNA sequencing was performed on patient fecal samples, 16S rDNA sequencing on mouse fecal samples, and flow cytometric analysis on mouse tumor tissue. RESULTS: Responder patients have both a different microbial community structure than non-responders (P = 0.004) and a different bacterial transcriptome (PC2 = 0.03) at baseline. Taxa significantly enriched in responders include amplicon sequence variants (ASVs) belonging to the genera Ruminococcus, Akkermansia, and Faecalibacterium. Pooled and individual responder microbiota transplantation into gnotobiotic mice decreased tumor growth compared to non-responder colonized mice following ICI (P = 0.023, P = 0.019, P = 0.008, respectively). Responder tumors showed an increased anti-tumor cellular phenotype following ICI treatment. Responder mice are enriched with ASVs belonging to the genera Bacteroides, Blautia, Akkermansia, and Faecalibacterium. Overlapping taxa mapping between human and mouse cohorts correlated with tumor size and weight revealed a network highlighting responder-associated ASVs belonging to the genera Colidextribacter, Frisingicoccus, Marvinbryantia, and Blautia which have not yet been reported. CONCLUSIONS: The role of isolate-specific function and bacterial gene expression in gut microbial-driven responsiveness to ICI has been underappreciated. This work supports further investigation using isolate-driven models to characterize the mechanisms underlying this phenomenon.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Receptor de Muerte Celular Programada 1 , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA