Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121662

RESUMEN

Type IVa pili (T4aP) are versatile bacterial cell surface structures that undergo extension/adhesion/retraction cycles powered by the cell envelope-spanning T4aP machine. In this machine, a complex composed of four minor pilins and PilY1 primes T4aP extension and is also present at the pilus tip mediating adhesion. Similar to many several other bacteria, Myxococcus xanthus contains multiple minor pilins/PilY1 sets that are incompletely understood. Here, we report that minor pilins and PilY1 (PilY1.1) of cluster_1 form priming and tip complexes contingent on calcium and a noncanonical cytochrome c (TfcP) with an unusual His/Cys heme ligation. We provide evidence that TfcP is unlikely to participate in electron transport and instead stimulates calcium binding by PilY1.1 at low-calcium concentrations, thereby stabilizing PilY1.1 and enabling T4aP function in a broader range of calcium concentrations. These results not only identify a previously undescribed function of cytochromes c but also illustrate how incorporation of an accessory factor expands the environmental range under which the T4aP system functions.


Asunto(s)
Calcio/metabolismo , Citocromos c/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Secuencia de Aminoácidos , Adhesión Bacteriana/fisiología , Myxococcus xanthus/metabolismo , Alineación de Secuencia
2.
Adv Appl Microbiol ; 125: 1-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38783722

RESUMEN

Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.


Asunto(s)
Nanotecnología , Nanotecnología/métodos , Biotecnología/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bacterias/metabolismo , Bacterias/genética
3.
J Bacteriol ; 204(3): e0034621, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606372

RESUMEN

Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments, such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter-too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller nanocompartments have been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments and the prospects for applications, as well as open questions and challenges that need to be addressed to fully understand these important structures.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas Bacterianas/química , Orgánulos
4.
Trends Biochem Sci ; 41(2): 190-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26719091

RESUMEN

Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications.


Asunto(s)
Ceruloplasmina/metabolismo , Compuestos Férricos/metabolismo , Minerales/metabolismo , Compartimento Celular , Ferritinas/metabolismo
5.
EMBO J ; 33(17): 1896-911, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25024436

RESUMEN

Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Sustancias Macromoleculares/metabolismo , Myxococcus xanthus/fisiología , Nanopartículas/metabolismo , Estrés Oxidativo , Microscopía por Crioelectrón , Modelos Moleculares , Myxococcus xanthus/ultraestructura , Multimerización de Proteína
6.
Proc Natl Acad Sci U S A ; 112(22): E2939-46, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26038568

RESUMEN

Bacterial cells in their native environments must cope with factors that compromise the integrity of the cell. The mechanisms of coping with damage in a social or multicellular context are poorly understood. Here we investigated how a model social bacterium, Myxococcus xanthus, approaches this problem. We focused on the social behavior of outer membrane exchange (OME), in which cells transiently fuse and exchange their outer membrane (OM) contents. This behavior requires TraA, a homophilic cell surface receptor that identifies kin based on similarities in a polymorphic region, and the TraB cohort protein. As observed by electron microscopy, TraAB overexpression catalyzed a prefusion OM junction between cells. We then showed that damage sustained by the OM of one population was repaired by OME with a healthy population. Specifically, LPS mutants that were defective in motility and sporulation were rescued by OME with healthy donors. In addition, a mutant with a conditional lethal mutation in lpxC, an essential gene required for lipid A biosynthesis, was rescued by Tra-dependent interactions with a healthy population. Furthermore, lpxC cells with damaged OMs, which were more susceptible to antibiotics, had resistance conferred to them by OME with healthy donors. We also show that OME has beneficial fitness consequences to all cells. Here, in merged populations of damaged and healthy cells, OME catalyzed a dilution of OM damage, increasing developmental sporulation outcomes of the combined population by allowing it to reach a threshold density. We propose that OME is a mechanism that myxobacteria use to overcome cell damage and to transition to a multicellular organism.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lipopolisacáridos/metabolismo , Interacciones Microbianas/fisiología , Myxococcus xanthus/fisiología , Cartilla de ADN/genética , Aptitud Genética/fisiología , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mutagénesis , Myxococcus xanthus/ultraestructura , Reacción en Cadena de la Polimerasa
7.
PLoS Pathog ; 11(5): e1004891, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25951442

RESUMEN

Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/metabolismo , Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis , Peptidil Transferasas/metabolismo , Animales , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Viabilidad Microbiana/efectos de los fármacos , Mutación , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidil Transferasas/genética , Filogenia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Virulencia/efectos de los fármacos
8.
J Biol Chem ; 289(46): 32364-32378, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25271164

RESUMEN

Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1-4- and 1-3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1-4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA-H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix.


Asunto(s)
Myxococcus xanthus/química , Antígenos O/química , Polisacáridos/química , Esporas Bacterianas/química , Proteínas Bacterianas/química , Centrifugación por Gradiente de Densidad , Microscopía Electrónica , Mutación , Oligosacáridos/química , Fenotipo
9.
BMC Vet Res ; 10: 24, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24433341

RESUMEN

BACKGROUND: Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. RESULTS: Dose-response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining.Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. CONCLUSIONS: These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted.


Asunto(s)
Virus de la Bronquitis Infecciosa/efectos de los fármacos , Extractos Vegetales/farmacología , Sambucus nigra/química , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Frutas/química , Nigella sativa/química , Extractos Vegetales/química , Raíces de Plantas/química , Rhodiola/química , Semillas/química , Células Vero
10.
Mol Microbiol ; 83(3): 486-505, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22188356

RESUMEN

Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo or two other genetic loci encoding homologues of polysaccharide synthesis enzymes fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel Gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Myxococcus xanthus/fisiología , Polisacáridos/metabolismo , Esporas Bacterianas/fisiología , Sitios Genéticos , Microscopía Inmunoelectrónica , Mutagénesis Insercional , Myxococcus xanthus/genética , Operón , Eliminación de Secuencia , Esporas Bacterianas/ultraestructura
11.
J Basic Microbiol ; 53(9): 785-91, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23322594

RESUMEN

Myxococcus xanthus, a predatory soil bacterium, has long been used as a model organism to study bacterial gliding motility. Research has revealed that two fundamentally distinct motor systems power gliding in this bacterium: repeated extensions and retractions of pili mediate social or (S-) motility, whereas the motor powering adventurous or (A-) motility has not yet been identified with certainty. Several different hypotheses to explain A-motility have been suggested and differ with respect to the involved motor structures as well as the mechanics of motility. As some of the more recent models invoke helically arranged structures and processes that require rotations of the cell, we decided to re-examine myxobacterial motility using microcinematographic techniques. This re-examination was also prompted by the lack of direct experimental data on the rotation of M. xanthus during gliding. Microcinematographic observations of deformed cells and cells containing large stationary intracellular structures reveal clearly that M. xanthus gliding does not require cell rotation.


Asunto(s)
Locomoción , Myxococcus xanthus/fisiología , Proteínas Fimbrias/genética , Eliminación de Gen , Microscopía por Video , Myxococcus xanthus/genética
12.
Mol Microbiol ; 80(4): 1031-51, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21414039

RESUMEN

Bactofilins are fibre-forming bacterial cytoskeletal proteins. Here, we report the structural and biochemical characterization of MXAN_7475 (BacM), one of the four bactofilins of Myxococcus xanthus. Absence of BacM leads to a characteristic 'crooked' cell morphology and an increased sensitivity to antibiotics targeting cell wall biosynthesis. The absence of the other three bactofilins MXAN_4637-4635 (BacN-P) has no obvious phenotype. In M. xanthus, BacM exists as a 150-amino-acid full-length version and as a version cleaved before Ser28. In the cell, native BacM forms 3 nm wide fibres, which assemble into bundles forming helix-like cytoplasmic cables throughout the cell, and in a subset of cells additionally a polarly arranged lateral rod-like structure. Isolated fibres consist almost completely of the N-terminally truncated version, suggesting that the proteolytic cleavage occurs before or during fibre formation. Fusion of BacM to mCherry perturbs BacM function and cellular fibre arrangement, resulting for example in the formation of one prominent polar corkscrew-like structure per cell. Immunofluorescence staining of BacM and MreB shows that their cellular distributions are not matching. Taken together, these data suggest that rod-shaped bacteria like M. xanthus use bactofilin fibres to achieve and maintain their characteristic cell morphology and cell wall stability.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fenómenos Fisiológicos Celulares , Proteínas del Citoesqueleto/metabolismo , Myxococcus xanthus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Pared Celular/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/ultraestructura , Farmacorresistencia Bacteriana , Técnica del Anticuerpo Fluorescente , Immunoblotting , Microscopía Electrónica , Microscopía Fluorescente , Myxococcus xanthus/química , Myxococcus xanthus/citología , Myxococcus xanthus/genética , Myxococcus xanthus/ultraestructura , Unión Proteica , Isoformas de Proteínas
13.
Microb Physiol ; 31(2): 57-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33794538

RESUMEN

Bacterial predation is a ubiquitous and fundamental biological process, which influences the community composition of microbial ecosystems. Among the best characterised bacterial predators are the myxobacteria, which include the model organism Myxococcus xanthus. Predation by M. xanthus involves the secretion of antibiotic metabolites and hydrolytic enzymes, which results in the lysis of prey organisms and release of prey nutrients into the extracellular milieu. Due to the generalist nature of this predatory mechanism, M. xanthus has a broad prey range, being able to kill and consume Gram-negative/positive bacteria and fungi. Potential prey organisms have evolved a range of behaviours which protect themselves from attack by predators. In recent years, several investigations have studied the molecular responses of a broad variety of prey organisms to M. xanthus predation. It seems that the diverse mechanisms employed by prey belong to a much smaller number of general "predation resistance" strategies. In this mini-review, we present the current state of knowledge regarding M. xanthus predation, and how prey organisms resist predation. As previous molecular studies of prey susceptibility have focussed on individual genes/metabolites, we have also undertaken a genome-wide screen for genes of Pseudomonas aeruginosa which contribute to its ability to resist predation. P. aeruginosa is a World Health Organisation priority 1 antibiotic-resistant pathogen. It is metabolically versatile and has an array of pathogenic mechanisms, leading to its prevalence as an opportunistic pathogen. Using a library of nearly 5,500 defined transposon insertion mutants, we screened for "prey genes", which when mutated allowed increased predation by a fluorescent strain of M. xanthus. A set of candidate "prey proteins" were identified, which shared common functional roles and whose nature suggested that predation resistance by P. aeruginosa requires an effective metal/oxidative stress system, an intact motility system, and mechanisms for de-toxifying antimicrobial peptides.


Asunto(s)
Myxococcales , Myxococcus xanthus , Animales , Ecosistema , Mutación , Myxococcus xanthus/genética , Conducta Predatoria , Pseudomonas aeruginosa/genética
14.
Mol Microbiol ; 74(2): 497-517, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19788540

RESUMEN

Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the gram-negative bacterium Myxococcus xanthus. In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.


Asunto(s)
Metabolismo de los Lípidos , Myxococcus xanthus/ultraestructura , Esporas Bacterianas/ultraestructura , Lípidos/aislamiento & purificación , Microscopía Electrónica , Mutación , Myxococcus xanthus/genética , Myxococcus xanthus/crecimiento & desarrollo , Myxococcus xanthus/metabolismo , Proteoma , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Estrés Fisiológico
15.
PLoS Pathog ; 4(8): e1000135, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18725926

RESUMEN

Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae.


Asunto(s)
Anopheles/virología , Densovirus , Insectos Vectores/virología , Malaria , Animales , Anopheles/genética , Densovirus/genética , Densovirus/patogenicidad , Vectores Genéticos/genética , Insectos Vectores/genética , Larva/genética
16.
Curr Biol ; 12(5): 369-77, 2002 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11882287

RESUMEN

BACKGROUND: Many microorganisms, including myxobacteria, cyanobacteria, and flexibacteria, move by gliding. Although gliding always describes a slow surface-associated translocation in the direction of the cell's long axis, it can result from two very different propulsion mechanisms: social (S) motility and adventurous (A) motility. The force for S motility is generated by retraction of type 4 pili. A motility may be associated with the extrusion of slime, but evidence has been lacking, and how force might be generated has remained an enigma. Recently, nozzle-like structures were discovered in cyanobacteria from which slime emanated at the same rate at which the bacteria moved. This strongly implicates slime extrusion as a propulsion mechanism for gliding. RESULTS: Here we show that similar but smaller nozzle-like structures are found in Myxococcus xanthus and that they are clustered at both cell poles, where one might expect propulsive organelles. Furthermore, light and electron microscopical observations show that slime is secreted in ribbons from the ends of cells. To test whether the slime propulsion hypothesis is physically reasonable, we construct a mathematical model of the slime nozzle to see if it can generate a force sufficient to propel M. xanthus at the observed velocities. The model assumes that the hydration of slime, a cationic polyelectrolyte, is the force-generating mechanism. CONCLUSIONS: The discovery of nozzle-like organelles in various gliding bacteria suggests their role in prokaryotic gliding. Our calculations and our observations of slime trails demonstrate that slime extrusion from such nozzles can account for most of the observed properties of A motile gliding.


Asunto(s)
Myxococcus/fisiología , Cianobacterias/fisiología , Cianobacterias/ultraestructura , Microscopía Electrónica , Modelos Biológicos , Movimiento , Moco/fisiología , Myxococcus/ultraestructura , Orgánulos/fisiología , Orgánulos/ultraestructura
17.
mBio ; 7(5)2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27601570

RESUMEN

UNLABELLED: A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ(G193D) allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ(G193D) filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. IMPORTANCE: The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Staphylococcus aureus/citología , Staphylococcus aureus/genética , Microscopía , Simulación de Dinámica Molecular , Conformación Proteica
18.
PLoS One ; 10(3): e0121074, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803609

RESUMEN

Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended ß-sheet structure, and we hypothesize a left-handed ß-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Interacciones Hidrofóbicas e Hidrofílicas , Myxococcus xanthus , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia , Propiedades de Superficie
19.
PLoS One ; 6(11): e27542, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110668

RESUMEN

EzrA is a negative regulator of FtsZ in Bacillus subtilis, involved in the coordination between cell growth and cell division and in the control of the cell elongation-division cycle. We have now studied the role of the Staphylococcus aureus homologue of the B. subtilis EzrA protein and shown that it is not essential for cell viability. EzrA conditional and null mutants have an overall increase of the average cell size, compared to wild type strains. In the larger ezrA mutant S. aureus cells, cell division protein FtsZ and the cell wall synthesizing Penicillin Binding Proteins (PBPs) are not properly localized. This suggests that there may be a maximum cell diameter that allows formation of a Z-ring capable of recruiting the other components of the divisome and of driving cytokinesis. We propose that the major role of EzrA in S. aureus is in cell size homeostasis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo , División Celular , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Elementos Transponibles de ADN/genética , Homeostasis , Hibridación Genética , Transporte de Proteínas , Staphylococcus aureus/genética
20.
Vaccine ; 29(8): 1683-9, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21199707

RESUMEN

Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world.


Asunto(s)
Adenoviridae/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Proteínas Protozoarias/inmunología , Animales , Anopheles/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/sangre , Proteínas de la Cápside/inmunología , Epítopos de Linfocito B/inmunología , Femenino , Células Hep G2 , Humanos , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Ratones , Ratones Endogámicos C57BL , Pruebas de Neutralización , Plasmodium falciparum/inmunología , Proteínas Recombinantes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA