Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 143(7): 074301, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26298128

RESUMEN

We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for (27)Al, (69)Ga, (71)Ga, (113)In, and (115)In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately -8.0 × 10(-3) of the nuclear magneton.

2.
J Chem Phys ; 141(21): 214303, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25481140

RESUMEN

We explore dipole polarizabilities of the singly and doubly charged anions F(-), Cl(-), O(2-), and S(2-) in an external, harmonic oscillator (HO) confining potential ∑(i)½ω(2)r(i)(2). We find that in contrast to F(-) and Cl(-) those for O(2-) and S(2-) are unrealistically high due to the instability of the corresponding restricted Hartree-Fock (RHF) solutions. Yet, already a relatively weak HO confining potential stabilizes their RHF solutions and eliminates any possible broken-symmetry solutions. The coupled-cluster theory with single, double and noniterative triple excitations (CCSD(T)) then yields considerably reduced polarizabilities for O(2-) and S(2-) relative to their unconfined values. We showed that polarizabilities of O(2-) and S(2-) are more sensitive to the strength of a confinement potential than are those for F(-) and Cl(-). This enables us to relate the confining parameter ω with the known experimental polarizabilities for selected crystals (our "training set") and to find a specific confining parameter ω for which the CCSD(T) polarizability equals the experimental in-crystal polarizability of an anion in the training set. The latter may then be used as an alternative approach for determining the in-crystal polarizabilities of anions by exploiting the fact that the characteristic ω values depend linearly on the ionic radius of a cation participating in specific crystals containing these anions. Using this method we then calculate the isotropic dipole polarizabilities for F(-), Cl(-), O(2-), and S(2-) embedded in the LiF, LiCl, NaF, NaCl, KF, KCl, ZnO, ZnS, MgO, MgS, CaO, CaS, SrO, SrS, BaO, BaS, and other crystals containing halogen, oxygen, or sulphur anions. We compare our results with those obtained via alternative models of the in-crystal anionic polarizabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA