Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782471

RESUMEN

The ability of pigeons to sense geomagnetic fields has been conclusively established despite a notable lack of determination of the underlying biophysical mechanisms. Quasi-spherical iron organelles previously termed "cuticulosomes" in the cochlea of pigeons have potential relevance to magnetoreception due to their location and iron composition; however, data regarding the magnetic susceptibility of these structures are currently limited. Here quantum magnetic imaging techniques are applied to characterize the magnetic properties of individual iron cuticulosomes in situ. The stray magnetic fields emanating from cuticulosomes are mapped and compared to a detailed analytical model to provide an estimate of the magnetic susceptibility of the individual particles. The images reveal the presence of superparamagnetic and ferrimagnetic domains within individual cuticulosomes and magnetic susceptibilities within the range 0.029 to 0.22. These results provide insights into the elusive physiological roles of cuticulosomes. The susceptibilities measured are not consistent with a torque-based model of magnetoreception, placing iron storage and stereocilia stabilization as the two leading putative cuticulosome functions. This work establishes quantum magnetic imaging as an important tool to complement the existing array of techniques used to screen for potential magnetic particle-based magnetoreceptor candidates.


Asunto(s)
Cóclea/diagnóstico por imagen , Columbidae/fisiología , Diagnóstico por Imagen/métodos , Hierro , Magnetismo , Orgánulos , Animales , Cóclea/citología , Diagnóstico por Imagen/instrumentación , Campos Magnéticos , Fenómenos Físicos , Materiales Inteligentes
2.
Small ; 17(10): e2005974, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576182

RESUMEN

Metalated phthalocyanines (Pc's) are robust and versatile molecular complexes, whose properties can be tuned by changing their functional groups and central metal atom. The electronic structure of magnesium Pc (MgPc)-structurally and electronically similar to chlorophyll-adsorbed on the Ag(100) surface is investigated by low-temperature scanning tunneling microscopy and spectroscopy, non-contact atomic force microscopy, and density functional theory. Single, isolated MgPc's exhibit a flat, fourfold rotationally symmetric morphology, with doubly degenerate, partially populated (due to surface-to-molecule electron transfer) lowest unoccupied molecular orbitals (LUMOs). In contrast, MgPc's with neighbouring molecules in proximity undergo a lift of LUMOs degeneracy, with a near-Fermi local density of states with reduced twofold rotational symmetry, indicative of a long-range attractive intermolecular interaction. The latter is assigned to a surface-mediated two-step electronic hybridization process. First, LUMOs interact with Ag(100) conduction electrons, forming hybrid molecule-surface orbitals with enhanced spatial extension. Then, these delocalized molecule-surface states further hybridize with those of neighbouring molecules. This work highlights how the electronic structure of molecular adsorbates-including orbital degeneracies and symmetries-can be significantly altered via surface-mediated intermolecular hybridization, over extended distances (beyond 3 nm), having important implications for prospects of molecule-based solid-state technologies.

3.
Nano Lett ; 20(3): 1855-1861, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32017577

RESUMEN

We realize a cryogenic wide-field nitrogen-vacancy microscope and use it to image Abrikosov vortices and transport currents in a superconducting Nb film. We observe the disappearance of vortices upon increase of laser power and their clustering about hot spots upon decrease, indicating local quenching of superconductivity by the laser. Resistance measurements confirm the presence of large temperature gradients across the film. We then investigate the effect of such gradients on transport currents where the current path is seen to correlate with the temperature profile even in the fully superconducting phase. In addition to highlighting the role of temperature inhomogeneities in superconductivity phenomena, this work establishes that under sufficiently low laser power conditions wide-field nitrogen-vacancy microscopy enables imaging over mesoscopic scales down to 4 K with submicrometer spatial resolution, providing a new platform for spatially resolved investigations of a range of systems from topological insulators to van der Waals ferromagnets.

4.
Small ; 15(18): e1805159, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30912265

RESUMEN

Magnetic microparticles or "beads" are used in a variety of research applications from cell sorting through to optical force traction microscopy. The magnetic properties of such particles can be tailored for specific applications with the uniformity of individual beads critical to their function. However, the majority of magnetic characterization techniques quantify the magnetic properties from large bead ensembles. Developing new magnetic imaging techniques to evaluate and visualize the magnetic fields from single beads will allow detailed insight into the magnetic uniformity, anisotropy, and alignment of magnetic domains. Here, diamond-based magnetic microscopy is applied to image and characterize individual magnetic beads with varying magnetic and structural properties: ferromagnetic and superparamagnetic/paramagnetic, shell (coated with magnetic material), and solid (magnetic material dispersed in matrix). The single-bead magnetic images identify irregularities in the magnetic profiles from individual bead populations. Magnetic simulations account for the varying magnetic profiles and allow to infer the magnetization of individual beads. Additionally, this work shows that the imaging technique can be adapted to achieve illumination-free tracking of magnetic beads, opening the possibility of tracking cell movements and mechanics in photosensitive contexts.


Asunto(s)
Magnetismo , Microscopía/métodos , Microesferas , Anisotropía , Movimiento Celular , Fenómenos Físicos
5.
Sensors (Basel) ; 18(4)2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29690603

RESUMEN

Magnetic imaging with ensembles of nitrogen-vacancy (NV) centres in diamond is a recently developed technique that allows for quantitative vector field mapping. Here we uncover a source of artefacts in the measured magnetic field in situations where the magnetic sample is placed in close proximity (a few tens of nm) to the NV sensing layer. Using magnetic nanoparticles as a test sample, we find that the measured field deviates significantly from the calculated field, in shape, amplitude and even in sign. By modelling the full measurement process, we show that these discrepancies are caused by the limited measurement range of NV sensors combined with the finite spatial resolution of the optical readout. We numerically investigate the role of the stand-off distance to identify an artefact-free regime, and discuss an application to ultrathin materials. This work provides a guide to predict and mitigate proximity-induced artefacts that can arise in NV-based wide-field magnetic imaging, and also demonstrates that the sensitivity of these artefacts to the sample can make them a useful tool for magnetic characterisation.

6.
Phys Rev Lett ; 118(16): 167204, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28474945

RESUMEN

The coherent control of spin qubits forms the basis of many applications in quantum information processing and nanoscale sensing, imaging, and spectroscopy. Such control is conventionally achieved by direct driving of the qubit transition with a resonant global field, typically at microwave frequencies. Here we introduce an approach that relies on the resonant driving of nearby environment spins, whose localized magnetic field in turn drives the qubit when the environmental spin Rabi frequency matches the qubit resonance. This concept of environmentally mediated resonance (EMR) is explored experimentally using a qubit based on a single nitrogen-vacancy (NV) center in diamond, with nearby electronic spins serving as the environmental mediators. We demonstrate EMR driven coherent control of the NV spin state, including the observation of Rabi oscillations, free induction decay, and spin echo. This technique also provides a way to probe the nanoscale environment of spin qubits, which we illustrate by acquisition of electron spin resonance spectra from single NV centers in various settings.

7.
Nano Lett ; 16(1): 326-33, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26709529

RESUMEN

Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.


Asunto(s)
Nanopartículas de Magnetita/química , Imagen Molecular , Nanodiamantes/química , Nanotecnología , Compuestos Férricos/química , Oro/química , Microscopía de Fuerza Atómica
8.
Nature ; 467(7316): 687-91, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20877281

RESUMEN

The size of silicon transistors used in microelectronic devices is shrinking to the level at which quantum effects become important. Although this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in silicon can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility of eliminating nuclear spins from the bulk crystal. However, the control of single electrons in silicon has proved challenging, and so far the observation and manipulation of a single spin has been impossible. Here we report the demonstration of single-shot, time-resolved readout of an electron spin in silicon. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor-compatible with current microelectronic technology. We observed a spin lifetime of ∼6 seconds at a magnetic field of 1.5 tesla, and achieved a spin readout fidelity better than 90 per cent. High-fidelity single-shot spin readout in silicon opens the way to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.

9.
Small ; 11(3): 374-81, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25293353

RESUMEN

A detailed theoretical study of the electronic and transport properties of a single atom transistor, where a single phosphorus atom is embedded within a single crystal transistor architecture, is presented. Using a recently reported deterministic single-atom transistor as a reference, the electronic structure of the device is represented atomistically with a tight-binding model, and the channel modulation is simulated self-consistently with a Thomas-Fermi method. The multi-scale modeling approach used allows confirmation of the charging energy of the one-electron donor charge state and explains how the electrostatic environments of the device electrodes affects the donor confinement potential and hence extent in gate voltage of the two-electron charge state. Importantly, whilst devices are relatively insensitive to dopant ordering in the highly doped leads, a ∼1% variation of the charging energy is observed when a dopant is moved just one lattice spacing within the device. The multi-scale modeling method presented here lays a strong foundation for the understanding of single-atom device structures: essential for both classical and quantum information processing.

10.
Phys Rev Lett ; 113(24): 246406, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541787

RESUMEN

An atomistic method of calculating the spin-lattice relaxation times (T1) is presented for donors in silicon nanostructures comprising of millions of atoms. The method takes into account the full band structure of silicon including the spin-orbit interaction. The electron-phonon Hamiltonian, and hence, the deformation potential, is directly evaluated from the strain-dependent tight-binding Hamiltonian. The technique is applied to single donors and donor clusters in silicon, and explains the variation of T1 with the number of donors and electrons, as well as donor locations. Without any adjustable parameters, the relaxation rates in a magnetic field for both systems are found to vary as B5, in excellent quantitative agreement with experimental measurements. The results also show that by engineering electronic wave functions in nanostructures, T1 times can be varied by orders of magnitude.

11.
Phys Rev Lett ; 112(4): 047601, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24580492

RESUMEN

The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the optical and spin resonances of the NV- center are observed under hydrostatic pressures up to 60 GPa. Our results motivate powerful new techniques to measure pressure and image high-pressure magnetic and electric phenomena. Additionally, molecular orbital analysis and semiclassical calculations provide insight into the effects of compression on the electronic orbitals of the NV- center.

12.
Nano Lett ; 13(5): 1903-9, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23570240

RESUMEN

The exact location of a single dopant atom in a nanostructure can influence or fully determine the functionality of highly scaled transistors or spin-based devices. We demonstrate here a noninvasive spatial metrology technique, based on the microscopic modeling of three electrical measurements on a single-atom (phosphorus in silicon) spin qubit device: hyperfine coupling, ground state energy, and capacitive coupling to nearby gates. This technique allows us to locate the qubit atom with a precision of ±2.5 nm in two directions and ±15 nm in the third direction, which represents a 1500-fold improvement with respect to the prefabrication statistics obtainable from the ion implantation parameters.


Asunto(s)
Nanoestructuras/química , Fósforo/química , Silicio/química
13.
Proc Natl Acad Sci U S A ; 107(44): 18777-82, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20937908

RESUMEN

In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.


Asunto(s)
Canales Iónicos/fisiología , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Puntos Cuánticos , Animales , Humanos , Membrana Dobles de Lípidos/química
14.
Sci Rep ; 13(1): 11956, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488141

RESUMEN

The efficient preparation of quantum states is an important step in the execution of many quantum algorithms. In the noisy intermediate-scale quantum (NISQ) computing era, this is a significant challenge given quantum resources are scarce and typically only low-depth quantum circuits can be implemented on physical devices. We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state. The method uses a basis set of [Formula: see text], [Formula: see text], [Formula: see text], and CNOT gates and a genetic algorithm to systematically generate circuits to synthesize the target state to the required fidelity. GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods. This variability of the required accuracy facilitates overall higher accuracy on implementation, as error accumulation in high-depth circuits can be avoided. We directly compare the method to the state initialisation technique based on an exact synthesis technique by implemented in IBM Qiskit simulated with noise and implemented on physical IBM Quantum devices. Results achieved by GASP outperform Qiskit's exact general circuit synthesis method on a variety of states such as Gaussian states and W-states, and consistently show the method reduces the number of gates required for the quantum circuits to generate these quantum states to the required accuracy.

15.
ACS Nano ; 17(1): 372-381, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36534782

RESUMEN

Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 µg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.


Asunto(s)
Ferritinas , Metaloproteínas , Hierro , Diamante , Nanopartículas Magnéticas de Óxido de Hierro
16.
Trends Ecol Evol ; 38(8): 727-735, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105850

RESUMEN

A global technology arms race is underway to build evermore powerful and precise quantum computers. Quantum computers have the potential to tackle certain quantitative problems quicker than classical computers. The current focus of quantum computing is on pushing the boundaries of fundamental quantum information and commercial applications in industrial sectors, financial services, and other profit-led sectors, particularly where improvements in optimisation and sampling can improve increased economic return. We believe that ecologists could exploit the computational power of quantum computers because the statistical approaches commonly used in ecology already have proven pathways on quantum computers. Moreover, quantum computing could ultimately leapfrog our understanding of complex ecological systems, if the hardware, opportunity, and creativity of quantitative ecologists all align.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Computadores , Ecología
17.
Phys Rev Lett ; 108(18): 180501, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22681050

RESUMEN

The surface code is unarguably the leading quantum error correction code for 2D nearest neighbor architectures, featuring a high threshold error rate of approximately 1%, low overhead implementations of the entire Clifford group, and flexible, arbitrarily long-range logical gates. These highly desirable features come at the cost of significant classical processing complexity. We show how to perform the processing associated with an n×n lattice of qubits, each being manipulated in a realistic, fault-tolerant manner, in O(n2) average time per round of error correction. We also describe how to parallelize the algorithm to achieve O(1) average processing per round, using only constant computing resources per unit area and local communication. Both of these complexities are optimal.

18.
Sci Rep ; 12(1): 8985, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643811

RESUMEN

Quantum computers hold promise to circumvent the limitations of conventional computing for difficult molecular problems. However, the accumulation of quantum logic errors on real devices represents a major challenge, particularly in the pursuit of chemical accuracy requiring the inclusion of electronic correlation effects. In this work we implement the quantum computed moments (QCM) approach for hydrogen chain molecular systems up to H[Formula: see text]. On a superconducting quantum processor, Hamiltonian moments, [Formula: see text] are computed with respect to the Hartree-Fock state, which are then employed in Lanczos expansion theory to determine an estimate for the ground-state energy which incorporates electronic correlations and manifestly improves on the direct energy measurement. Post-processing purification of the raw QCM data takes the estimate below the Hartree-Fock energy to within 99.9% of the exact electronic ground-state energy for the largest system studied, H[Formula: see text]. Calculated dissociation curves indicate precision at about 10mH for this system and as low as 0.1mH for molecular hydrogen, H[Formula: see text], over a range of bond lengths. In the context of stringent precision requirements for chemical problems, these results provide strong evidence for the error suppression capability of the QCM method, particularly when coupled with post-processing error mitigation. While calculations based on the Hartree-Fock state are tractable to classical computation, these results represent a first step towards implementing the QCM method in a quantum chemical trial circuit. Greater emphasis on more efficient representations of the Hamiltonian and classical preprocessing steps may enable the solution of larger systems on near-term quantum processors.

19.
ACS Nano ; 16(8): 12580-12589, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35866839

RESUMEN

Interest in van der Waals materials often stems from a desire to miniaturize existing technologies by exploiting their intrinsic layered structures to create near-atomically thin components that do not suffer from surface defects. One appealing property is an easily switchable yet robust magnetic order, which is only sparsely demonstrated in the case of in-plane anisotropy. In this work, we use widefield nitrogen-vacancy (NV) center magnetic imaging to measure the properties of individual flakes of CuCrP2S6, a multiferroic van der Waals magnet known to exhibit weak easy-plane anisotropy in the bulk. We chart the crossover between the in-plane ferromagnetism in thin flakes down to the trilayer and the bulk behavior dominated by a low-field spin-flop transition. Further, by exploiting the directional dependence of NV center magnetometry, we are able to observe an instance of a predominantly out-of-plane ferromagetic phase near zero field, in contrast with our expectation and previous experiments on the bulk material. We attribute this to the presence of surface anisotropies caused by the sample preparation process or exposure to the ambient environment, which is expected to have more general implications for a broader class of weakly anisotropic van der Waals magnets.

20.
Opt Express ; 19(12): 11018-33, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21716331

RESUMEN

By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields ranging from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA