Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 33(13)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34911052

RESUMEN

Tin selenide (SnSe), a highly promising layered material, has been garnering particular interest in recent times due to its significant promise for future energy devices. Herein we report a simple solution-phase approach for growing highly crystalline layered SnSe nanoribbons. Polyvinylpyrrolidone (PVP) was used as a templating agent to selectively passivates the (100) and (001) facets of the SnSe nanoribbons resulting in the unique growth of nanoribbons along theirb-axis with a defined zigzag edge state along the sidewalls. The SnSe nanoribbons are few layers thick (∼20 layers), with mean widths of ∼40 nm, and achievable length of >1µm. Nanoribbons could be produced in relatively high quantities (>150 mg) in a single batch experiment. The PVP coating also offers some resistance to oxidation, with the removal of the PVP seen to lead to the formation of a SnSe/SnOxcore-shell structure. The use of non-toxic PVP to replace toxic amines that are typically employed for other 1D forms of SnSe is a significant advantage for sustainable and environmentally friendly applications. Heat transport properties of the SnSe nanoribbons, derived from power-dependent Raman spectroscopy, demonstrate the potential of SnSe nanoribbons as thermoelectric material.

2.
Chemistry ; 26(72): 17581-17587, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33006155

RESUMEN

Black phosphorus (BP) has extraordinary properties, but its ambient instability remains a critical challenge. Functionalization has been employed to overcome the sensitivity of BP to ambient conditions while preserving its properties. Herein, a simultaneous exfoliation-functionalization process is reported that functionalizes BP flakes during exfoliation and thus provides increased protection, which can be attributed to minimal exposure of the flakes to ambient oxygen and water. A tetrabutylammonium salt was employed for intercalation of BP, resulting in the formation of flakes with large lateral dimensions. The addition of an aryl iodide or an aryl iodonium salt to the exfoliation solvent creates a scalable strategy for the production of functionalized few-layer BP flakes. The ambient stability of functionalized BP was prolonged to a period of one week, as revealed by STEM, AFM, and X-ray photoelectron spectroscopy.

3.
Langmuir ; 36(34): 9993-10002, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32787047

RESUMEN

Reported here is a new chemical route for the wet chemical functionalization of germanium (Ge), whereby arsanilic acid is covalently bound to a chlorine (Cl)-terminated surface. This new route is used to deliver high concentrations of arsenic (As) dopants to Ge, via monolayer doping (MLD). Doping, or the introduction of Group III or Group V impurity atoms into the crystal lattice of Group IV semiconductors, is essential to allow control over the electronic properties of the material to enable transistor devices to be switched on and off. MLD is a diffusion-based method for the introduction of these impurity atoms via surface-bound molecules, which offers a nondestructive alternative to ion implantation, the current industry doping standard, making it suitable for sub-10 nm structures. Ge, given its higher carrier mobilities, is a leading candidate to replace Si as the channel material in future devices. Combining the new chemical route with the existing MLD process yields active carrier concentrations of dopants (>1 × 1019 atoms/cm3) that rival those of ion implantation. It is shown that the dose of dopant delivered to Ge is also controllable by changing the size of the precursor molecule. X-ray photoelectron spectroscopy (XPS) data and density functional theory (DFT) calculations support the formation of a covalent bond between the arsanilic acid and the Cl-terminated Ge surface. Atomic force microscopy (AFM) indicates that the integrity of the surface is maintained throughout the chemical procedure, and electrochemical capacitance voltage (ECV) data shows a carrier concentration of 1.9 × 1019 atoms/cm3 corroborated by sheet resistance measurements.

4.
Nanotechnology ; 31(16): 165402, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31891917

RESUMEN

The combination of two active Li-ion materials (Ge and Sn) can result in improved conduction paths and higher capacity retention. Here we report for the first time, the implementation of Ge1-x Sn x alloy nanowires as anode materials for Li-ion batteries. Ge1-x Sn x alloy nanowires have been successfully grown via vapor-liquid-solid technique directly on stainless steel current collectors. Ge1-x Sn x (x = 0.048) nanowires were predominantly seeded from the Au0.80Ag0.20 catalysts with negligible amount of growth was also directly catalyzed from stainless steel substrate. The electrochemical performance of the the Ge1-x Sn x nanowires as an anode material for Li-ion batteries was investigated via galvanostatic cycling and detailed analysis of differential capacity plots (DCPs). The nanowire electrodes demonstrated an exceptional capacity retention of 93.4% from the 2nd to the 100th charge at a C/5 rate, while maintaining a specific capacity value of ∼921 mAh g-1 after 100 cycles. Voltage profiles and DCPs revealed that the Ge1-x Sn x nanowires behave as an alloying mode anode material, as reduction/oxidation peaks for both Ge and Sn were observed, however it is clear that the reversible lithiation of Ge is responsible for the majority of the charge stored.

5.
Langmuir ; 35(6): 2172-2178, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30636416

RESUMEN

Black phosphorus (BP) is emerging as a promising candidate for electronic, optical, and energy storage applications. However, its poor ambient stability remains a critical challenge. Evaluation of few-layer liquid-exfoliated BP during ambient exposure using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy allows its surface chemistry to be investigated. Oxidation of liquid-exfoliated few-layer BP initially occurs through nonbridging oxide species, which convert to bridging oxide species after ambient exposure. We demonstrate the instability of these bridging oxide species, which undergo hydrolysis to form volatile phosphorus oxides and evaporate from the BP surface. FTIR spectroscopy, scanning transmission electron microscopy, and atomic force microscopy were used to confirm the formation of liquid oxides through a continuous oxidation cycle that results in the decomposition of BP. Furthermore, we show that the instability of few-layer BP originates from the formation of bridging oxide species.

6.
Nanotechnology ; 30(33): 335706, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31026844

RESUMEN

Phase-change random access memory is a promising approach to non-volatile memory. However, the inability to secure consistent, reliable switching on a nanometre scale may limit its practical use for high density applications. Here, we report on the switching behaviour of PCRAM cells comprised of single crystalline Ge9Sb1Te5 (GST) nanowires. We show that device switching is dominated by the contacts and does not result in a resistance change within the bulk of the wire. For the devices studied, the typical contact resistance was ∼30 kΩ, whereas the resistance of the GST channel was 1.8 kΩ. The applied voltage was predominately dropped across the passivating oxide on the surface of the GST nanowires, resulting in local resistive switching at the contacts and local power dissipation, which limited the endurance of the devices produced. The optimal device must balance low resistance contacts with a more resistive channel, to facilitate phase change switching within the nanowires. These results highlight the importance of contact formation on the switching properties in phase change devices and help guide the future design of more reliable neuromorphic devices.

7.
Nanotechnology ; 30(32): 324001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30986779

RESUMEN

Silicon nanowire (Si NW) sensors have attracted great attention due to their ability to provide fast, low-cost, label-free, real-time detection of chemical and biological species. Usually configured as field effect transistors (FETs), they have already demonstrated remarkable sensitivity with high selectivity (through appropriate functionalisation) towards a large number of analytes in both liquid and gas phases. Despite these excellent results, Si NW FET sensors have not yet been successfully employed to detect single molecules of either a chemical or biological target species. Here we show that sensors based on silicon junctionless nanowire transistors (JNTs), the simplest possible transistors, are capable of detecting the protein streptavidin at a concentration as low as 580 zM closely approaching the single molecule level. This ultrahigh detection sensitivity is due to the intrinsic advantages of junctionless devices over conventional FETs. Apart from their superior functionality, JNTs are much easier to fabricate by standard microelectronic processes than transistors containing p-n junctions. The ability of JNT sensors to detect ultra-low concentrations (in the zeptomolar range) of target species, and their potential for low-cost mass production, will permit their deployment in numerous environments, including life sciences, biotechnology, medicine, pharmacology, product safety, environmental monitoring and security.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas/análisis , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Límite de Detección , Nanocables/química , Silicio/química , Estreptavidina/análisis
8.
J Am Chem Soc ; 140(51): 17915-17922, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30456949

RESUMEN

Intercalation-type electrodes have now been commonly employed in today's batteries as such materials are capable of storing and releasing lithium reversibly via topotactic transformation, conducive to small structural change, but they have limited interstitial sites to hold Li. In contrast, conversion electrodes feature high Li-storage capacity, but often undergo large structural change during (de)lithiation, resulting in cycling instability. One exception is iron fluoride (FeF2), a conversion-type cathode that exhibits both high capacity and high cycling stability. Herein, we report a lithiation-driven topotactic transformation in a single crystal of FeF2, unveiled by in situ visualization of the spatial and crystallographic correlation between the parent and converted phases. Specifically, conversion in FeF2 resembles the intercalation process but involves transport of both Li+ and Fe2+ ions within the F-anion array, leading to formation of Fe preferentially along specific crystallographic orientations of FeF2. Throughout the process, the F-anion framework is retained, creating a checkerboard-like structure, within which the volume change is largely compensated, thereby enabling the high cyclability in FeF2. Findings from this study, with unique insights into conversion reaction mechanisms, may help to pave the way for designing conversion-type electrodes for the next-generation high energy lithium batteries.

9.
Phys Chem Chem Phys ; 19(21): 14042-14047, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28516985

RESUMEN

Nanoscale heating production using nanowires has been shown to be particularly attractive for a number of applications including nanostructure growth, localized doping, transparent heating and sensing. However, all proof-of-concept devices proposed so far relied on the use of highly conductive nanomaterials, typically metals or highly doped semiconductors. In this article, we demonstrate a novel nanoheater architecture based on a single semiconductor nanowire field-effect transistor (NW-FET). Nominally undoped ZnO nanowires were incorporated into three-terminal devices whereby control of the nanowire temperature at a given source-drain bias was achieved by additional charge carriers capacitatively induced via the third gate electrode. Joule-heating selective ablation of poly(methyl methacrylate) deposited on ZnO nanowires was shown, demonstrating the ability of the proposed NW-FET configuration to enhance by more than one order of magnitude the temperature of a ZnO nanowire, compared to traditional two-terminal configurations. These findings demonstrate the potential of field-effect architectures to improve Joule heating power in nanowires, thus vastly expanding the range of suitable materials and applications for nanowire-based nanoheaters.

10.
Soft Matter ; 12(24): 5429-37, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27240904

RESUMEN

In this work, we are reporting a very simple and efficient method to form lamellar structures of symmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymer thin films with vertically (to the surface plane) orientated lamellae using a solvent annealing approach. The methodology does not require any brush chemistry to engineer a neutral surface and it is the block neutral nature of the film-solvent vapour interface that defines the orientation of the lamellae. The microphase separated structure of two different molecular weight lamellar forming PS-block-P4VP copolymers formed under solvent vapour annealing was monitored using atomic force microscopy (AFM) so as to understand the morphological changes of the films upon different solvent exposure. In particular, the morphology changes from micellar structures to well-defined microphase separated arrangements. The choice of solvent/s (single and dual solvent exposure) and the solvent annealing conditions (temperature, time etc.) has important effects on structural transitions of the films and it was found that a block neutral solvent was required to realize vertically aligned P4VP lamellae. The results of the structural variation of the phase separated nanostructured films through the exposure to ethanol are also described.

11.
Nanotechnology ; 27(34): 342002, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27418239

RESUMEN

Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

12.
Small ; 11(1): 103-11, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25196560

RESUMEN

Vapour-liquid-solid (VLS) techniques are popular routes for the scalable synthesis of semiconductor nanowires. In this article, in-situ electron microscopy is used to correlate the equilibrium content of ternary (Au0.75 Ag0.25 -Ge and Au0.65 Ag0.35 -Ge) metastable alloys with the kinetics, thermodynamics and diameter of Ge nanowires grown via a VLS mechanism. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires varies as a function of nanowire diameter and eutectic alloy composition. The behaviour of the faceted heterogeneous liquid-solid interface correlates with the growth kinetics of the nanowires, where the main growth facet at the solid nanowire-liquid catalyst drop contact line lengthens for faster nanowire growth kinetics. Pronounced diameter dependent growth kinetics, as inferred from liquid-solid interfacial behaviour, is apparent for the synthesised nanowires. Direct in-situ microscopy observations facilitates the comparison between the nanowire growth behaviour from ternary (Au-Ag-Ge) and binary (Au-Ge) eutectic systems.

13.
Macromol Rapid Commun ; 36(8): 762-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704307

RESUMEN

The directed self-assembly of block copolymer (BCP) materials in topographically patterned substrates (i.e., graphoepitaxy) is a potential methodology for the continued scaling of nanoelectronic device technologies. In this Communication, an unusual feature size variation in BCP nanodomains under confinement with graphoepitaxially aligned cylinder-forming poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP is reported. Graphoepitaxy of PS-b-P4VP BCP line patterns (CII ) is accomplished via topo-graphy in hydrogen silsequioxane (HSQ) modified substrates and solvent vapor annealing (SVA). Interestingly, reduced domain sizes in features close to the HSQ guiding features are observed. The feature size reduction is evident after inclusion of alumina into the P4VP domains followed by pattern transfer to the silicon substrate. It is suggested that this nano-domain size perturbation is due to solvent swelling effects during SVA. It is proposed that using a commensurability value close to the solvent vapor annealed periodicity will alleviate this issue leading to uniform nanofins.


Asunto(s)
Nanotecnología/métodos , Polimerizacion , Polímeros/química , Silicio/química , Solventes/química , Óxido de Aluminio/química , Equipos y Suministros Eléctricos , Galvanoplastia/métodos , Compuestos de Organosilicio/síntesis química , Compuestos de Organosilicio/química , Volatilización
14.
Langmuir ; 30(47): 14123-7, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25396678

RESUMEN

Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.


Asunto(s)
Ácido Cítrico/química , Germanio/química
15.
Langmuir ; 30(35): 10728-39, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25137566

RESUMEN

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high-χ lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 °C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

16.
J Nanosci Nanotechnol ; 14(7): 5221-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24758007

RESUMEN

The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.

17.
Nano Lett ; 13(9): 4044-52, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23919662

RESUMEN

This article describes an innovative approach in which bimetallic alloy seeds of AuxAg1-x are used to enhance the growth kinetics of Ge nanowires, via a vapor-liquid-solid (VLS) growth technique. The decreased equilibrium concentration and increased supersaturation of Ge in the liquid alloy seeds, compared to pure Au seeds, results in favorable growth kinetics and the realization of high-aspect ratio millimeter-long Ge nanowires. Also detailed is the manifestation of the Gibbs-Thompson effect resulting in diameter-dependent nanowire growth rates as a function of the Au-Ag-Ge eutectic composition. Significantly, AuxAg1-x alloy seeds lower the critical diameter of the Ge nanowires in this liquid-seeded growth approach. In situ TEM heating experiments established the correlation between the growth kinetics and equilibrium eutectic compositions in the ternary growth systems. The fundamental insights of nanowire growth demonstrated with the ternary eutectic alloys opens up opportunities to engineer the aspect ratio and morphology of a range of semiconductor nanowires.

18.
Angew Chem Int Ed Engl ; 53(16): 4142-5, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24615926

RESUMEN

The shape sensitivity of Pd catalysts in Suzuki-Miyaura coupling reactions is studied using nanocrystals enclosed by well-defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet-dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.


Asunto(s)
Paladio/química , Catálisis , Modelos Moleculares , Estructura Molecular
19.
Langmuir ; 29(28): 8959-68, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23751134

RESUMEN

The directed self-assembly (DSA) of block copolymer (BCP) thin films could enable a scalable, bottom-up alternative to photolithography for the generation of substrate features. The PS-b-PDMS (polystyrene-b-polydimethylsiloxane) system is attractive as it can be extended toward very small feature sizes as well as having two blocks that can be readily differentiated during pattern transfer. However, PS-b-PDMS offers a considerable challenge because of the chemical differences in the blocks which lead to poor surface-wetting, poor pattern orientation control, and structural instabilities. These challenges can be mitigated by careful definition of the interface chemistry between the substrate and the BCP. Here, we report controlled pattern formation in cylinder forming PS-b-PDMS system by use of a carefully controlled PDMS brush. Control of the brush was achieved using exposure to UV-O3 for varying time. It is demonstrated that this treatment enhances surface wetting and coverage of the BCP. The modified brushes also enable DSA of the BCP on topographically patterned substrates. UV-O3 exposure was also used to reveal the BCP structure and provide an in situ "hard mask" for pattern transfer to the substrate.

20.
Langmuir ; 29(38): 11950-8, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23968278

RESUMEN

Palladium-catalyzed Suzuki, Heck, and Sonogashira coupling reactions were studied as reaction protocols for organic modification of Si surfaces. These synthetically useful protocols allow for surface modification of alkene, alkyne, and halide terminated surfaces. Surface oxidation and metal contamination were assessed by X-ray photoelectron spectroscopy. The nature of the primary passivation layer was an important factor in the oxidation resistance of the Si surface during the secondary functionalization. Specifically, the use of alkynes as the primary functionalization layer gave superior stability compared to alkene analogues. The ability to utilize Pd-catalyzed coupling chemistries on Si surfaces opens great versatility for potential molecular and nanoscale electronics and sensing/biosensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA