Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 286(29): 25495-504, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21596744

RESUMEN

Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.


Asunto(s)
Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Fenotipo , Proteómica , Sinapsis/metabolismo , Actinas/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Región CA1 Hipocampal/ultraestructura , Diferenciación Celular , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Neuritas/metabolismo , Plasticidad Neuronal/fisiología , Seudópodos/metabolismo , Sinapsis/patología , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patología , Espectrometría de Masas en Tándem
2.
Neuron ; 54(4): 627-38, 2007 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-17521574

RESUMEN

Fragile X syndrome, caused by a mutation in the Fmr1 gene, is characterized by mental retardation. Several studies reported the absence of long-term potentiation (LTP) at neocortical synapses in Fmr1 knockout (FMR1-KO) mice, but underlying cellular mechanisms are unknown. We find that in the prefrontal cortex (PFC) of FMR1-KO mice, spike-timing-dependent LTP (tLTP) is not so much absent, but rather, the threshold for tLTP induction is increased. Calcium signaling in dendrites and spines is compromised. First, dendrites and spines more often fail to show calcium transients. Second, the activity of L-type calcium channels is absent in spines. tLTP could be restored by improving reliability and amplitude of calcium signaling by increasing neuronal activity. In FMR1-KO mice that were raised in enriched environments, tLTP was restored to WT levels. Our results show that mechanisms for synaptic plasticity are in place in the FMR1-KO mouse PFC, but require stronger neuronal activity to be triggered.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Animales , Animales Recién Nacidos , Bloqueadores de los Canales de Calcio/farmacología , Corteza Cerebral/citología , Espinas Dendríticas/metabolismo , Estimulación Eléctrica/métodos , Ambiente , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nifedipino/farmacología , Técnicas de Placa-Clamp/métodos , Células Piramidales/efectos de los fármacos , Células Piramidales/efectos de la radiación , Células Piramidales/ultraestructura , Factores de Tiempo
3.
Elife ; 102021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34698633

RESUMEN

Mice have a large visual field that is constantly stabilized by vestibular ocular reflex (VOR) driven eye rotations that counter head-rotations. While maintaining their extensive visual coverage is advantageous for predator detection, mice also track and capture prey using vision. However, in the freely moving animal quantifying object location in the field of view is challenging. Here, we developed a method to digitally reconstruct and quantify the visual scene of freely moving mice performing a visually based prey capture task. By isolating the visual sense and combining a mouse eye optic model with the head and eye rotations, the detailed reconstruction of the digital environment and retinal features were projected onto the corneal surface for comparison, and updated throughout the behavior. By quantifying the spatial location of objects in the visual scene and their motion throughout the behavior, we show that the prey image consistently falls within a small area of the VOR-stabilized visual field. This functional focus coincides with the region of minimal optic flow within the visual field and consequently area of minimal motion-induced image-blur, as during pursuit mice ran directly toward the prey. The functional focus lies in the upper-temporal part of the retina and coincides with the reported high density-region of Alpha-ON sustained retinal ganglion cells.


Mice have a lot to keep an eye on. To survive, they need to dodge predators looming on land and from the skies, while also hunting down the small insects that are part of their diet. To do this, they are helped by their large panoramic field of vision, which stretches from behind and over their heads to below their snouts. To stabilize their gaze when they are on the prowl, mice reflexively move their eyes to counter the movement of their head: in fact, they are unable to move their eyes independently. This raises the question: what part of their large visual field of view do these rodents use when tracking a prey, and to what advantage? This is difficult to investigate, since it requires simultaneously measuring the eye and head movements of mice as they chase and capture insects. In response, Holmgren, Stahr et al. developed a new technique to record the precise eye positions, head rotations and prey location of mice hunting crickets in surroundings that were fully digitized at high resolution. Combining this information allowed the team to mathematically recreate what mice would see as they chased the insects, and to assess what part of their large visual field they were using. This revealed that, once a cricket had entered any part of the mice's large field of view, the rodents shifted their head ­ but not their eyes ­ to bring the prey into both eye views, and then ran directly at it. If the insect escaped, the mice repeated that behavior. During the pursuit, the cricket's position was mainly held in a small area of the mouse's view that corresponds to a specialized region in the eye which is thought to help track objects. This region also allowed the least motion-induced image blur when the animals were running forward. The approach developed by Holmgren, Stahr et al. gives a direct insight into what animals see when they hunt, and how this constantly changing view ties to what happens in the eyes. This method could be applied to other species, ushering in a new wave of tools to explore what freely moving animals see, and the relationship between behaviour and neural circuitry.


Asunto(s)
Etología/métodos , Movimientos Oculares , Conducta Alimentaria , Percepción de Movimiento , Flujo Optico , Conducta Predatoria , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Reflejo Vestibuloocular , Percepción Visual
4.
J Neurochem ; 112(4): 900-12, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19943846

RESUMEN

While the ultimate dependence of brain function on its energy supply is evident, how basic neuronal parameters and network activity respond to energy metabolism deviations is unresolved. The resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)) are among the most fundamental parameters controlling neuronal excitability. However, alterations of E(m) and E(GABA) under conditions of metabolic stress are not sufficiently documented, although it is well known that metabolic crisis may lead to neuronal hyper-excitability and aberrant neuronal network activities. In this work, we show that in slices, availability of energy substrates determines whether GABA signaling displays an inhibitory or excitatory mode, both in neonatal neocortex and hippocampus. We demonstrate that in the neonatal brain, E(m) and E(GABA) strongly depend on composition of the energy substrate pool. Complementing glucose with ketone bodies, pyruvate or lactate resulted in a significant hyperpolarization of both E(m) and E(GABA), and induced a radical shift in the mode of GABAergic synaptic transmission towards network inhibition. Generation of giant depolarizing potentials, currently regarded as the hallmark of spontaneous neonatal network activity in vitro, was strongly inhibited both in neocortex and hippocampus in the energy substrate enriched solution. Based on these results we suggest the composition of the artificial cerebrospinal fluid, which bears a closer resemblance to the in vivo energy substrate pool. Our results suggest that energy deficits induce unfavorable changes in E(m) and E(GABA), leading to neuronal hyperactivity that may initiate a cascade of pathological events.


Asunto(s)
Metabolismo Energético/fisiología , Potenciales de la Membrana/fisiología , Neocórtex/citología , Transducción de Señal/fisiología , Ácido gamma-Aminobutírico/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , Ácido 3-Hidroxibutírico/farmacología , Animales , Animales Recién Nacidos , Bicarbonatos/metabolismo , Metabolismo Energético/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Glucosa/metabolismo , Hipocampo/citología , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Cuerpos Cetónicos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp/métodos , Ácido Pirúvico , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Estadísticas no Paramétricas , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/farmacología
5.
J Neurochem ; 110(4): 1330-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19558450

RESUMEN

In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Metabolismo Energético/fisiología , Cuerpos Cetónicos/metabolismo , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Corteza Cerebral/citología , Antiportadores de Cloruro-Bicarbonato/efectos de los fármacos , Antiportadores de Cloruro-Bicarbonato/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Cuerpos Cetónicos/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Receptores de GABA/efectos de los fármacos , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Simportadores de Cloruro de Sodio-Potasio/efectos de los fármacos , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12 , Ácido gamma-Aminobutírico/farmacología
6.
Neuroscientist ; 11(4): 334-44, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16061520

RESUMEN

The contribution of retrograde signaling to information processing in the brain has been contemplated for a long time, especially with respect to central nervous system development and long-term synaptic plasticity. During the past few years, however, the concept of retrograde signaling has been expanding to include short-term modifications of synaptic efficacy. The classic point of view on synaptic transmission represents it as a unidirectional transfer of information from presynaptic to postsynaptic sites. This paradigm has, however, been questioned in several experimental studies of neurons in different brain regions. These results suggest that a fast retrograde signal, which provides feedback, exists in active synaptic contacts. In particular, it was found that the dendritic release of retrograde messengers controls the efficacy of synaptic transmission in both excitatory and inhibitory connections between neocortical pyramidal cells and interneurons. The present review discusses these findings and the mechanisms underlying synaptic retrograde signaling.


Asunto(s)
Dendritas/metabolismo , Neocórtex/citología , Red Nerviosa/metabolismo , Neuronas/citología , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Animales , Modelos Neurológicos , Neocórtex/fisiología , Red Nerviosa/citología , Inhibición Neural/fisiología , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Neuronas/clasificación , Neuronas/metabolismo
7.
J Neurochem ; 88(5): 1229-39, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15009679

RESUMEN

Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell-derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell-derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES-derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region-specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.


Asunto(s)
Encéfalo/citología , Diferenciación Celular/fisiología , Neuronas/citología , Células Madre/citología , Animales , Supervivencia Celular , Células Cultivadas , Electrofisiología , Supervivencia de Injerto , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Técnicas de Placa-Clamp , Trasplante de Células Madre , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA