RESUMEN
Behavior contains rich structure across many timescales, but there is a dearth of methods to identify relevant components, especially over the longer periods required for learning and decision-making. Inspired by the goals and techniques of genome-wide association studies, we present a data-driven method-the choice-wide behavioral association study: CBAS-that systematically identifies such behavioral features. CBAS uses a powerful, resampling-based, method of multiple comparisons correction to identify sequences of actions or choices that either differ significantly between groups or significantly correlate with a covariate of interest. We apply CBAS to different tasks and species (flies, rats, and humans) and find, in all instances, that it provides interpretable information about each behavioral task.
RESUMEN
Scientific progress depends on reliable and reproducible results. Progress can also be accelerated when data are shared and re-analyzed to address new questions. Current approaches to storing and analyzing neural data typically involve bespoke formats and software that make replication, as well as the subsequent reuse of data, difficult if not impossible. To address these challenges, we created Spyglass, an open-source software framework that enables reproducible analyses and sharing of data and both intermediate and final results within and across labs. Spyglass uses the Neurodata Without Borders (NWB) standard and includes pipelines for several core analyses in neuroscience, including spectral filtering, spike sorting, pose tracking, and neural decoding. It can be easily extended to apply both existing and newly developed pipelines to datasets from multiple sources. We demonstrate these features in the context of a cross-laboratory replication by applying advanced state space decoding algorithms to publicly available data. New users can try out Spyglass on a Jupyter Hub hosted by HHMI and 2i2c: https://spyglass.hhmi.2i2c.cloud/.
RESUMEN
Anatomic evaluation is an important aspect of many studies in neuroscience; however, it often lacks information about the three-dimensional structure of the brain. Micro-CT imaging provides an excellent, nondestructive, method for the evaluation of brain structure, but current applications to neurophysiological or lesion studies require removal of the skull as well as hazardous chemicals, dehydration, or embedding, limiting their scalability and utility. Here we present a protocol using eosin in combination with bone decalcification to enhance contrast in the tissue and then employ monochromatic and propagation phase-contrast micro-CT imaging to enable the imaging of brain structure with the preservation of the surrounding skull. Instead of relying on descriptive, time-consuming, or subjective methods, we develop simple quantitative analyses to map the locations of recording electrodes and to characterize the presence and extent of hippocampal brain lesions.