Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468681

RESUMEN

Glacial landforms, including lobate debris aprons, are a global water ice reservoir on Mars preserving ice from past periods when high orbital obliquity permitted nonpolar ice accumulation. Numerous studies have noted morphological similarities between lobate debris aprons and terrestrial debris-covered glaciers, an interpretation supported by radar observations. On Earth and Mars, these landforms consist of a core of flowing ice covered by a rocky lag. Terrestrial debris-covered glaciers advance in response to climate forcing driven by obliquity-paced changes to ice mass balance. However, on Mars, it is not known whether glacial landforms emplaced over the past 300 to 800 formed during a single, long deposition event or during multiple glaciations. Here, we show that boulders atop 45 lobate debris aprons exhibit no evidence of monotonic comminution but are clustered into bands that become more numerous with increasing latitude, debris apron length, and pole-facing flow orientation. Boulder bands are prominent at glacier headwalls, consistent with debris accumulation during the current Martian interglacial. Terrestrial glacier boulder bands occur near flow discontinuities caused by obliquity-driven hiatuses in ice accumulation, forming internal debris layers. By analogy, we suggest that Martian lobate debris aprons experienced multiple cycles of ice deposition, followed by ice destabilization in the accumulation zone, leading to boulder-dominated lenses and subsequent ice deposition and continued flow. Correlation between latitude and boulder clustering suggests that ice mass-balance works across global scales on Mars. Lobate debris aprons may preserve ice spanning multiple glacial/interglacial cycles, extending Mars climate records back hundreds of millions of years.

2.
Nature ; 474(7349): 72-5, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21637255

RESUMEN

The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Regiones Antárticas , Geografía , Cubierta de Hielo/química , Océanos y Mares , Isótopos de Oxígeno/análisis
3.
Nature ; 465(7297): 450-3, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20505722

RESUMEN

The landscape of the north polar layered deposits of Mars (NPLD) is dominated by a pinwheel array of enigmatic spiral troughs. The troughs have intrigued planetary scientists since the Mariner 9 spacecraft returned the first close-up image in 1972, but conclusive evidence of their origin has remained elusive. Debate continues regarding all aspects of the troughs, including the possibility that they have migrated, their age in relation to the current NPLD surface, and whether they are fundamentally erosional or constructional features. The troughs are probably related to climatic processes, yet the nature of this relationship has remained a mystery. Previous data characterizing only the exposed NLPD surface were insufficient to test these hypotheses. Here we show that the central spiral troughs initiated after deposition of three-quarters of the NPLD, quickly reached a stable morphology and migrated approximately 65 kilometres poleward and 600 metres in altitude over the past two million years or so. Our radar stratigraphy rules out hypotheses of erosional incision post-dating deposition, and instead largely validates an early hypothesis for constructional trough migration with wind transport and atmospheric deposition as dominant processes. These results provide hard constraints for palaeo-climate models and a new context for evaluating imagery, spectral data, and now radar sounding data, the better to understand the link between orbital parameters and climate, the role of climate in shaping the polar ice of Mars, and eventually, the age of the polar deposits themselves.

4.
Science ; 359(6372): 199-201, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29326269

RESUMEN

Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars' high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.


Asunto(s)
Medio Ambiente Extraterrestre , Cubierta de Hielo , Marte
5.
Science ; 352(6289): 1075-8, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230372

RESUMEN

Layered ice deposits at the poles of Mars record a detailed history of accumulation and erosion related to climate processes. Radar investigations measure these layers and provide evidence for climate changes such as ice advance and retreat. We present a detailed analysis of observational data showing that ~87,000 cubic kilometers of ice have accumulated at the poles since the end of the last ice age ~370,000 years ago; this volume is equivalent to a global layer of ~60 centimeters. The majority of the material accumulated at the north pole. These results provide both a means to understand the accumulation history of the polar deposits as related to orbital Milankovitch cycles and constraints for better determination of Mars' past and future climates.

6.
Science ; 332(6031): 838-41, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21512003

RESUMEN

Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.


Asunto(s)
Hielo Seco , Marte , Atmósfera , Dióxido de Carbono , Frío , Medio Ambiente Extraterrestre , Hielo , Agua
7.
Science ; 322(5905): 1235-8, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19023078

RESUMEN

Lobate features abutting massifs and escarpments in the middle latitudes of Mars have been recognized in images for decades, but their true nature has been controversial, with hypotheses of origin such as ice-lubricated debris flows or glaciers covered by a layer of surface debris. These models imply an ice content ranging from minor and interstitial to massive and relatively pure. Soundings of these deposits in the eastern Hellas region by the Shallow Radar on the Mars Reconnaissance Orbiter reveal radar properties entirely consistent with massive water ice, supporting the debris-covered glacier hypothesis. The results imply that these glaciers formed in a previous climate conducive to glaciation at middle latitudes. Such features may collectively represent the most extensive nonpolar ice yet recognized on Mars.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Hielo , Radar
8.
Science ; 320(5880): 1182-5, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18483402

RESUMEN

The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed approximately 100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

9.
Science ; 317(5845): 1715-8, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17885128

RESUMEN

Mars' polar regions are covered with ice-rich layered deposits that potentially contain a record of climate variations. The sounding radar SHARAD on the Mars Reconnaissance Orbiter mapped detailed subsurface stratigraphy in the Promethei Lingula region of the south polar plateau, Planum Australe. Radar reflections interpreted as layers are correlated across adjacent orbits and are continuous for up to 150 kilometers along spacecraft orbital tracks. The reflectors are often separated into discrete reflector sequences, and strong echoes are seen as deep as 1 kilometer. In some cases, the sequences are dipping with respect to each other, suggesting an interdepositional period of erosion. In Australe Sulci, layers are exhumed, indicating recent erosion.


Asunto(s)
Marte , Medio Ambiente Extraterrestre , Hielo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA