RESUMEN
The difference between maximum metabolic rate and standard metabolic rate is referred to as aerobic scope, and because it constrains performance it is suggested to constitute a key limiting process prescribing how fish may cope with or adapt to climate warming. We use an evolutionary bioenergetics model for Atlantic cod (Gadus morhua) to predict optimal life histories and behaviours at different temperatures. The model assumes common trade-offs and predicts that optimal temperatures for growth and fitness lie below that for aerobic scope; aerobic scope is thus a poor predictor of fitness at high temperatures. Initially, warming expands aerobic scope, allowing for faster growth and increased reproduction. Beyond the optimal temperature for fitness, increased metabolic requirements intensify foraging and reduce survival; oxygen budgeting conflicts thus constrain successful completion of the life cycle. The model illustrates how physiological adaptations are part of a suite of traits that have coevolved.
Asunto(s)
Adaptación Fisiológica/fisiología , Cambio Climático , Gadus morhua/fisiología , Oxígeno/metabolismo , Animales , Metabolismo Basal , Conducta Animal , Metabolismo Energético , Gadus morhua/metabolismo , Calor , Estadios del Ciclo de Vida/fisiología , Consumo de OxígenoRESUMEN
Many species around the world have collapsed, yet only some have recovered. A key question is what happens to populations post collapse. Traditionally, marine fish collapses are linked to overfishing, poor climate, and recruitment. We test whether the effect on biomass change from these drivers remains the same after a collapse. We used a regression model to analyse the effect of harvesting, recruitment, and climate variability on biomass change before and after a collapse across 54 marine fish populations around the world. The most salient result was the change in fishing effect that became weaker after a collapse. The change in sea temperature and recruitment effects were more variable across systems. The strongest changes were in the pelagic habitats. The resultant change in the sensitivity to external drivers indicates that whilst biomass may be rebuilt, the responses to variables known to affect stocks may have changed after a collapse. Our results show that a general model applied to many stocks provides useful insights, but that not all stocks respond similarly to a collapse calling for stock-specific models. Stocks respond to environmental drivers differently after a collapse, so caution is needed when using pre-collapse knowledge to advise on population dynamics and management.
Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Biomasa , Caza , Ecosistema , Dinámica Poblacional , Peces , Cambio ClimáticoRESUMEN
Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922-2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.
RESUMEN
Climate change has a profound impact on species distribution and abundance globally, as well as local diversity, which affects ecosystem functioning. In particular, changes in population distribution and abundance may lead to changes in trophic interactions. Although species can often shift their spatial distribution when suitable habitats are available, it has been suggested that predator presence can be a constraint on climate-related distribution shifts. We test this using two well-studied and data-rich marine environments. Focusing on a pair of sympatric fishes, Atlantic haddock Melanogrammus aeglefinus and cod Gadus morhua, we study the effect of the presence and abundance of the latter on the former distribution. We found that the distribution of cod and increased abundance may limit the expansion of haddock to new areas and could consequently buffer ecosystem changes due to climate change. Though marine species may track the rate and direction of climate shifts, our results demonstrate that the presence of predators may limit their expansion to thermally suitable habitats. By integrating climatic and ecological data at scales that can resolve predator-prey relationships, this analysis demonstrates the usefulness of considering trophic interactions to gain a more comprehensive understanding and to mitigate the effects of climate change on species distributions.
Asunto(s)
Ecosistema , Peces , Animales , Conducta Predatoria , Cambio ClimáticoRESUMEN
At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity, assessing risks for local populations, or predicting and mitigating the spread of invasive species.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema , Peces/fisiología , Predicción , Especies Introducidas/tendencias , Modelos Biológicos , Animales , Geografía , Océanos y Mares , Factores de TiempoRESUMEN
All communities may re-assemble after disturbance. Predictions for re-assembly outcomes are, however, rare. Here we model how fish communities in an extremely variable Australian desert river re-assemble following episodic floods and drying. We apply information entropy to quantify variability in re-assembly and the dichotomy between stochastic and deterministic community states. Species traits were the prime driver of community state: poor oxygen tolerance, low dispersal ability, and high fecundity constrain variation in re-assembly, shifting assemblages towards more stochastic states. In contrast, greater connectivity, while less influential than the measured traits, results in more deterministic states. Ecology has long recognised both the stochastic nature of some re-assembly trajectories and the role of evolutionary and bio-geographic processes. Our models explicitly test the addition of species traits and landscape linkages to improve predictions of community re-assembly, and will be useful in a range of different ecosystems.
Asunto(s)
Conducta Animal/fisiología , Biota/fisiología , Peces/fisiología , Animales , Australia , Evolución Biológica , Ecología , Ecosistema , Inundaciones , Hidrobiología/métodos , Instinto , Modelos Teóricos , Ríos , Procesos EstocásticosRESUMEN
Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.