Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 47(2): e12, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30418619

RESUMEN

Tissues used in pathology laboratories are typically stored in the form of formalin-fixed, paraffin-embedded (FFPE) samples. One important consideration in repurposing FFPE material for next generation sequencing (NGS) analysis is the sequencing artifacts that can arise from the significant damage to nucleic acids due to treatment with formalin, storage at room temperature and extraction. One such class of artifacts consists of chimeric reads that appear to be derived from non-contiguous portions of the genome. Here, we show that a major proportion of such chimeric reads align to both the 'Watson' and 'Crick' strands of the reference genome. We refer to these as strand-split artifact reads (SSARs). This study provides a conceptual framework for the mechanistic basis of the genesis of SSARs and other chimeric artifacts along with supporting experimental evidence, which have led to approaches to reduce the levels of such artifacts. We demonstrate that one of these approaches, involving S1 nuclease-mediated removal of single-stranded fragments and overhangs, also reduces sequence bias, base error rates, and false positive detection of copy number and single nucleotide variants. Finally, we describe an analytical approach for quantifying SSARs from NGS data.


Asunto(s)
Artefactos , Fijadores , Formaldehído , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Animales , Biblioteca Genómica , Genómica , Calor , Ratones Endogámicos C57BL , Adhesión en Parafina
2.
BMC Genomics ; 18(1): 515, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28679365

RESUMEN

BACKGROUND: RNA-Sequencing (RNA-seq) is now commonly used to reveal quantitative spatiotemporal snapshots of the transcriptome, the structures of transcripts (splice variants and fusions) and landscapes of expressed mutations. However, standard approaches for library construction typically require relatively high amounts of input RNA, are labor intensive, and are time consuming. METHODS: Here, we report the outcome of a systematic effort to optimize and streamline steps in strand-specific RNA-seq library construction. RESULTS: This work has resulted in the identification of an optimized messenger RNA isolation protocol, a potent reverse transcriptase for cDNA synthesis, and an efficient chemistry and a simplified formulation of library construction reagents. We also present an optimization of bead-based purification and size selection designed to maximize the recovery of cDNA fragments. CONCLUSIONS: These developments have allowed us to assemble a rapid high throughput pipeline that produces high quality data from amounts of total RNA as low as 25 ng. While the focus of this study is on RNA-seq sample preparation, some of these developments are also relevant to other next-generation sequencing library types.


Asunto(s)
Biblioteca de Genes , ARN Mensajero , Análisis de Secuencia de ARN/métodos , Manejo de Especímenes/normas , Células HL-60 , Humanos
3.
Curr Biol ; 15(10): 935-41, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15916950

RESUMEN

Cilia and flagella play important roles in many physiological processes, including cell and fluid movement, sensory perception, and development. The biogenesis and maintenance of cilia depend on intraflagellar transport (IFT), a motility process that operates bidirectionally along the ciliary axoneme. Disruption in IFT and cilia function causes several human disorders, including polycystic kidneys, retinal dystrophy, neurosensory impairment, and Bardet-Biedl syndrome (BBS). To uncover new ciliary components, including IFT proteins, we compared C. elegans ciliated neuronal and nonciliated cells through serial analysis of gene expression (SAGE) and screened for genes potentially regulated by the ciliogenic transcription factor, DAF-19. Using these complementary approaches, we identified numerous candidate ciliary genes and confirmed the ciliated-cell-specific expression of 14 novel genes. One of these, C27H5.7a, encodes a ciliary protein that undergoes IFT. As with other IFT proteins, its ciliary localization and transport is disrupted by mutations in IFT and bbs genes. Furthermore, we demonstrate that the ciliary structural defect of C. elegans dyf-13(mn396) mutants is caused by a mutation in C27H5.7a. Together, our findings help define a ciliary transcriptome and suggest that DYF-13, an evolutionarily conserved protein, is a novel core IFT component required for cilia function.


Asunto(s)
Caenorhabditis elegans/genética , Cilios/genética , Perfilación de la Expresión Génica , Neuronas/metabolismo , Animales , Secuencia de Bases , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Biología Computacional , Genómica/métodos , Proteínas Fluorescentes Verdes , Mutación/genética , Transporte de Proteínas/fisiología , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
4.
PLoS One ; 12(6): e0178706, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28570594

RESUMEN

Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.


Asunto(s)
Automatización , ADN/aislamiento & purificación , Formaldehído/química , Secuenciación de Nucleótidos de Alto Rendimiento , Adhesión en Parafina , ARN/aislamiento & purificación , Fijación del Tejido/métodos , ADN/genética , ARN/genética
6.
Clin Cancer Res ; 20(5): 1125-34, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24323902

RESUMEN

PURPOSE: Cancers accumulate mutations over time, each of which brings the potential for recognition by the immune system. We evaluated T-cell recognition of the tumor mutanome in patients with ovarian cancer undergoing standard treatment. EXPERIMENTAL DESIGN: Tumor-associated T cells from 3 patients with ovarian cancer were assessed by ELISPOT for recognition of nonsynonymous mutations identified by whole exome sequencing of autologous tumor. The relative levels of mutations and responding T cells were monitored in serial tumor samples collected at primary surgery and first and second recurrence. RESULTS: The vast majority of mutations (78/79) were not recognized by tumor-associated T cells; however, a highly specific CD8(+) T-cell response to the mutation hydroxysteroid dehydrogenase-like protein 1 (HSDL1)(L25V) was detected in one patient. In the primary tumor, the HSDL1(L25V) mutation had low prevalence and expression, and a corresponding T-cell response was undetectable. At first recurrence, there was a striking increase in the abundance of the mutation and corresponding MHC class I epitope, and this was accompanied by the emergence of the HSDL1(L25V)-specific CD8(+) T-cell response. At second recurrence, the HSDL1(L25V) mutation and epitope continued to be expressed; however, the corresponding T-cell response was no longer detectable. CONCLUSION: The immune system can respond to the evolving ovarian cancer genome. However, the T-cell response detected here was rare, was transient, and ultimately failed to prevent disease progression. These findings reveal the limitations of spontaneous tumor immunity in the setting of standard treatments and suggest a high degree of ignorance of tumor mutations that could potentially be reversed by immunotherapy.


Asunto(s)
Vigilancia Inmunológica , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Progresión de la Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA/inmunología , Humanos , Hidroxiesteroide Deshidrogenasas/genética , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor/inmunología , Clasificación del Tumor , Neoplasias Ováricas/patología , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA