Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood ; 135(17): 1484-1496, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32078672

RESUMEN

Factor VIII (FVIII) replacement products enable comprehensive care in hemophilia A. Treatment goals in severe hemophilia A are expanding beyond low annualized bleed rates to include long-term outcomes associated with high sustained FVIII levels. Endogenous von Willebrand factor (VWF) stabilizes and protects FVIII from degradation and clearance, but it also subjects FVIII to a half-life ceiling of ∼15 to 19 hours. Increasing recombinant FVIII (rFVIII) half-life further is ultimately dependent upon uncoupling rFVIII from endogenous VWF. We have developed a new class of FVIII replacement, rFVIIIFc-VWF-XTEN (BIVV001), that is physically decoupled from endogenous VWF and has enhanced pharmacokinetic properties compared with all previous FVIII products. BIVV001 was bioengineered as a unique fusion protein consisting of a VWF-D'D3 domain fused to rFVIII via immunoglobulin-G1 Fc domains and 2 XTEN polypeptides (Amunix Pharmaceuticals, Inc, Mountain View, CA). Plasma FVIII half-life after BIVV001 administration in mice and monkeys was 25 to 31 hours and 33 to 34 hours, respectively, representing a three- to fourfold increase in FVIII half-life. Our results showed that multifaceted protein engineering, far beyond a few amino acid substitutions, could significantly improve rFVIII pharmacokinetic properties while maintaining hemostatic function. BIVV001 is the first rFVIII with the potential to significantly change the treatment paradigm for severe hemophilia A by providing optimal protection against all bleed types, with less frequent doses. The protein engineering methods described herein can also be applied to other complex proteins.


Asunto(s)
Factor VIII/metabolismo , Hemofilia A/terapia , Hemorragia/prevención & control , Proteínas Recombinantes de Fusión/administración & dosificación , Factor de von Willebrand/metabolismo , Animales , Factor VIII/genética , Hemofilia A/metabolismo , Hemofilia A/patología , Hemostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Primates , Factor de von Willebrand/genética
2.
Nature ; 487(7408): 491-5, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22810586

RESUMEN

Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or 'passenger', cancer mutations from causal, or 'driver', mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Interacciones Huésped-Patógeno , Neoplasias/genética , Neoplasias/metabolismo , Virus Oncogénicos/patogenicidad , Proteínas Virales/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/patogenicidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Neoplasias/patología , Virus Oncogénicos/genética , Virus Oncogénicos/metabolismo , Sistemas de Lectura Abierta/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidad , Poliomavirus/genética , Poliomavirus/metabolismo , Poliomavirus/patogenicidad , Receptores Notch/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética
3.
Proc Natl Acad Sci U S A ; 112(2): 554-9, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25540416

RESUMEN

Epstein-Barr Virus (EBV) conversion of B-lymphocytes to Lymphoblastoid Cell Lines (LCLs) requires four EBV nuclear antigen (EBNA) oncoproteins: EBNA2, EBNALP, EBNA3A, and EBNA3C. EBNA2 and EBNALP associate with EBV and cell enhancers, up-regulate the EBNA promoter, MYC, and EBV Latent infection Membrane Proteins (LMPs), which up-regulate BCL2 to protect EBV-infected B-cells from MYC proliferation-induced cell death. LCL proliferation induces p16(INK4A) and p14(ARF)-mediated cell senescence. EBNA3A and EBNA3C jointly suppress p16(INK4A) and p14(ARF), enabling continuous cell proliferation. Analyses of the EBNA3A human genome-wide ChIP-seq landscape revealed 37% of 10,000 EBNA3A sites to be at strong enhancers; 28% to be at weak enhancers; 4.4% to be at active promoters; and 6.9% to be at weak and poised promoters. EBNA3A colocalized with BATF-IRF4, ETS-IRF4, RUNX3, and other B-cell Transcription Factors (TFs). EBNA3A sites clustered into seven unique groups, with differing B-cell TFs and epigenetic marks. EBNA3A coincidence with BATF-IRF4 or RUNX3 was associated with stronger EBNA3A ChIP-Seq signals. EBNA3A was at MYC, CDKN2A/B, CCND2, CXCL9/10, and BCL2, together with RUNX3, BATF, IRF4, and SPI1. ChIP-re-ChIP revealed complexes of EBNA3A on DNA with BATF. These data strongly support a model in which EBNA3A is tethered to DNA through a BATF-containing protein complexes to enable continuous cell proliferation.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/genética , ADN/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Linfocitos B/metabolismo , Linfocitos B/virología , Sitios de Unión/genética , Línea Celular , Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Ciclina D2/genética , Elementos de Facilitación Genéticos , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Genes bcl-2 , Genes myc , Genes p16 , Genoma Humano , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Factores Reguladores del Interferón/metabolismo , Regiones Promotoras Genéticas , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
PLoS Pathog ; 11(4): e1004822, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25855980

RESUMEN

The Epstein-Barr virus (EBV) nuclear proteins EBNA3A, EBNA3B, and EBNA3C interact with the cell DNA binding protein RBPJ and regulate cell and viral genes. Repression of the CDKN2A tumor suppressor gene products p16(INK4A) and p14(ARF) by EBNA3A and EBNA3C is critical for EBV mediated transformation of resting B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). To define the composition of endogenous EBNA3 protein complexes, we generated lymphoblastoid cell lines (LCLs) expressing flag-HA tagged EBNA3A, EBNA3B, or EBNA3C and used tandem affinity purification to isolate each EBNA3 complex. Our results demonstrated that each EBNA3 protein forms a distinct complex with RBPJ. Mass-spectrometry revealed that the EBNA3A and EBNA3B complexes also contained the deubquitylation complex consisting of WDR48, WDR20, and USP46 (or its paralog USP12) and that EBNA3C complexes contained WDR48. Immunoprecipitation confirmed that EBNA3A, EBNA3B, and EBNA3C association with the USP46 complex. Using chromatin immunoprecipitation, we demonstrate that WDR48 and USP46 are recruited to the p14(ARF) promoter in an EBNA3C dependent manner. Mapping studies were consistent with WDR48 being the primary mediator of EBNA3 association with the DUB complex. By ChIP assay, WDR48 was recruited to the p14(ARF) promoter in an EBNA3C dependent manner. Importantly, WDR48 associated with EBNA3A and EBNA3C domains that are critical for LCL growth, suggesting a role for USP46/USP12 in EBV induced growth transformation.


Asunto(s)
Transformación Celular Viral/genética , Endopeptidasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Regulación Viral de la Expresión Génica/genética , Ubiquitina Tiolesterasa/metabolismo , Western Blotting , Línea Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Endopeptidasas/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ubiquitina Tiolesterasa/genética
5.
Proc Natl Acad Sci U S A ; 111(1): 421-6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344258

RESUMEN

Epstein-Barr virus nuclear antigen 3C (EBNA3C) repression of CDKN2A p14(ARF) and p16(INK4A) is essential for immortal human B-lymphoblastoid cell line (LCL) growth. EBNA3C ChIP-sequencing identified >13,000 EBNA3C sites in LCL DNA. Most EBNA3C sites were associated with active transcription; 64% were strong H3K4me1- and H3K27ac-marked enhancers and 16% were active promoters marked by H3K4me3 and H3K9ac. Using ENCODE LCL transcription factor ChIP-sequencing data, EBNA3C sites coincided (±250 bp) with RUNX3 (64%), BATF (55%), ATF2 (51%), IRF4 (41%), MEF2A (35%), PAX5 (34%), SPI1 (29%), BCL11a (28%), SP1 (26%), TCF12 (23%), NF-κB (23%), POU2F2 (23%), and RBPJ (16%). EBNA3C sites separated into five distinct clusters: (i) Sin3A, (ii) EBNA2/RBPJ, (iii) SPI1, and (iv) strong or (v) weak BATF/IRF4. EBNA3C signals were positively affected by RUNX3, BATF/IRF4 (AICE) and SPI1/IRF4 (EICE) cooccupancy. Gene set enrichment analyses correlated EBNA3C/Sin3A promoter sites with transcription down-regulation (P < 1.6 × 10(-4)). EBNA3C signals were strongest at BATF/IRF4 and SPI1/IRF4 composite sites. EBNA3C bound strongly to the p14(ARF) promoter through SPI1/IRF4/BATF/RUNX3, establishing RBPJ-, Sin3A-, and REST-mediated repression. EBNA3C immune precipitated with Sin3A and conditional EBNA3C inactivation significantly decreased Sin3A binding at the p14(ARF) promoter (P < 0.05). These data support a model in which EBNA3C binds strongly to BATF/IRF4/SPI1/RUNX3 sites to enhance transcription and recruits RBPJ/Sin3A- and REST/NRSF-repressive complexes to repress p14(ARF) and p16(INK4A) expression.


Asunto(s)
Antígenos Virales/química , Linfocitos B/virología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Factores Reguladores del Interferón/química , Proteínas Proto-Oncogénicas/química , Proteínas Represoras/metabolismo , Transactivadores/química , Secuencias de Aminoácidos , Linfocitos B/citología , Sitios de Unión , Proliferación Celular , Inmunoprecipitación de Cromatina , Antígenos Nucleares del Virus de Epstein-Barr , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/metabolismo , Histonas/química , Humanos , Linfoma/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Recombinantes/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Proteína p14ARF Supresora de Tumor/metabolismo
6.
J Virol ; 83(23): 12368-77, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19776126

RESUMEN

B lymphocytes converted into lymphoblastoid cell lines (LCLs) by an Epstein-Barr virus that expresses a conditional EBNA3C require complementation with EBNA3C for growth under nonpermissive conditions. Complementation with relatively large EBNA3C deletion mutants identified amino acids (aa) 1 to 506 (which includes the RBP-Jkappa/CSL [RBP-Jkappa] binding domain) and 733 to 909 to be essential for LCL growth, aa 728 to 732 and 910 to 992 to be important for full wild-type (wt) growth, and only aa 507 to 727 to be unimportant (S. Maruo, Y. Wu, T. Ito, T. Kanda, E. D. Kieff, and K. Takada, Proc. Natl. Acad. Sci. USA 106:4419-4424, 2009). When mutants with smaller deletions were used, only aa 51 to 400 and 851 to 900 were essential for LCL growth; aa 447 to 544, 701 to 750, 801 to 850, and 901 to 992 were important for full wt growth; and aa 4 to 50, 401 to 450, 550 to 707, and 751 to 800 were unimportant. These data reduce the EBNA3C essential residues from 68% to 40% of the open reading frame. Point mutations confirmed RBP-Jkappa binding to be essential for wt growth and indicated that SUMO and CtBP binding interactions were important only for full wt growth. EBNA3C aa 51 to 150, 249 to 311, and 851 to 900 were necessary for maintaining LCL growth, but not RBP-Jkappa interaction, and likely mediate interactions with other key cell proteins. Moreover, all mutants null for LCL growth had fewer S+G(2)/M-phase cells at 14 days, consistent with EBNA3C interaction with RBP-Jkappa as well as aa 51 to 150, 249 to 311, and 851 to 900 being required to suppress p16(INK4A) (S. Maruo, Y. Wu, S. Ishikawa, T. Kanda, D. Iwakiri, and K. Takada, Proc. Natl. Acad. Sci. USA 103:19500-19505, 2006). We have confirmed that EBNA3C upregulates TCL1 and discovered that EBNA3C upregulates TCL1 through RBP-Jkappa, indicating a central role for EBNA3C interaction with RBP-Jkappa in mediating cell gene transcription.


Asunto(s)
Antígenos Virales/fisiología , Transformación Celular Neoplásica , Herpesvirus Humano 4/patogenicidad , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , Antígenos Virales/genética , Línea Celular Tumoral , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4/genética , Humanos , Mutagénesis Sitio-Dirigida , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia , Regulación hacia Arriba
7.
J Virol ; 82(17): 8509-19, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18562535

RESUMEN

The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two transcriptional regulators, Zta and Rta. We previously reported that the EBV protein encoded by the LF2 gene binds to Rta and can inhibit Rta activity in reporter gene assays. We now report that LF2 associates with Rta in the context of EBV-infected cells induced for lytic replication. LF2 inhibition of Rta occurs in both epithelial and B cells, and this downregulation is promoter specific: LF2 decreases Rta activation of the BALF2, BMLF1, and BMRF1 promoters by 60 to 90% but does not significantly decrease Rta activation of its own promoter (Rp). LF2 decreases Rta activation by at least two mechanisms: decreased DNA binding and interference with transcriptional activation by the Rta acidic activation domain. Coexpression of LF2 also specifically induces modification of Rta by the small ubiquitin-like modifiers SUMO2 and SUMO3. We further demonstrate that LF2 overexpression blocks lytic activation in EBV-infected cells induced with Rta or Zta. Our results demonstrate that LF2, a gene deleted from the EBV reference strain B95-8, encodes a potent inhibitor of EBV replication, and they suggest that future studies of EBV replication need to account for the potential effects of LF2 on Rta activity.


Asunto(s)
Herpesvirus Humano 4/fisiología , Proteínas Virales , Replicación Viral , Línea Celular , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr , Genes Reporteros , Herpesvirus Humano 4/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Riñón/citología , Luciferasas/metabolismo , Plásmidos , Transactivadores/genética , Transactivadores/metabolismo , Transfección
8.
Virology ; 414(1): 19-25, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21440926

RESUMEN

Association of EBV nuclear proteins EBNA2, EBNA3A and EBNA3C with RBP/CSL, is essential for lymphoblastoid cell line (LCL) proliferation. Conserved residues in the EBNA3 homology domain, required for RBP/CSL interaction, lack the WΦP motif that mediates EBNA2 and Notch binding to the RBP/CSL beta-trefoil domain (BTD). We map RBP/CSL interacting residues within EBNA3A(aa128-204) and EBNA3C(aa211-233). The EBNA3A results are consistent with an earlier report (aa125-222), but the EBNA3C domain is unexpectedly small and includes a "WTP" sequence. This EBNA3C WTP motif confers RBP/CSL binding in vitro, in yeast, and in mammalian cells. Further, an EBNA3C WTP→STP(W227S) mutation impaired BTD binding whereas EBNA3 homology domain mutations disrupted RBP/CSL N-terminal domain (NTD) binding. WTP was not essential for EBNA3C repression of EBNA2 in reporter assays or for maintenance of LCL growth. Our results indicate that EBNA3 proteins interact with multiple RBP/CSL domains, but only NTD interactions are required for LCL growth.


Asunto(s)
Antígenos Virales/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Mapeo de Interacción de Proteínas , Línea Celular , Genes Reporteros , Humanos , Inmunoprecipitación , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica , Técnicas del Sistema de Dos Híbridos
9.
Proc Natl Acad Sci U S A ; 104(18): 7606-11, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17446270

RESUMEN

A comprehensive mapping of interactions among Epstein-Barr virus (EBV) proteins and interactions of EBV proteins with human proteins should provide specific hypotheses and a broad perspective on EBV strategies for replication and persistence. Interactions of EBV proteins with each other and with human proteins were assessed by using a stringent high-throughput yeast two-hybrid system. Overall, 43 interactions between EBV proteins and 173 interactions between EBV and human proteins were identified. EBV-EBV and EBV-human protein interaction, or "interactome" maps provided a framework for hypotheses of protein function. For example, LF2, an EBV protein of unknown function interacted with the EBV immediate early R transactivator (Rta) and was found to inhibit Rta transactivation. From a broader perspective, EBV genes can be divided into two evolutionary classes, "core" genes, which are conserved across all herpesviruses and subfamily specific, or "noncore" genes. Our EBV-EBV interactome map is enriched for interactions among proteins in the same evolutionary class. Furthermore, human proteins targeted by EBV proteins were enriched for highly connected or "hub" proteins and for proteins with relatively short paths to all other proteins in the human interactome network. Targeting of hubs might be an efficient mechanism for EBV reorganization of cellular processes.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Proteínas/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA