Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 12(5): e0176960, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28464013

RESUMEN

Landscape genetic studies based on neutral genetic markers have contributed to our understanding of the influence of landscape composition and configuration on gene flow and genetic variation. However, the potential for species to adapt to changing landscapes will depend on how natural selection influences adaptive genetic variation. We demonstrate how landscape resistance models can be combined with genetic simulations incorporating natural selection to explore how the spread of adaptive variation is affected by landscape characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing regions of the southwestern United States as an example. We conducted genetic sampling and least-cost path modeling to optimize landscape resistance models independently for each region, and then simulated the spread of an adaptive allele favored by selection across each region. Optimized landscape resistance models differed between regions with respect to landscape variables included and their relationships to resistance, but the slope of terrain and the presence of water barriers and major roads had the greatest impacts on gene flow. Genetic simulations showed that differences among landscapes strongly influenced spread of adaptive genetic variation, with faster spread (1) in landscapes with more continuously distributed habitat and (2) when a pre-existing allele (i.e., standing genetic variation) rather than a novel allele (i.e., mutation) served as the source of adaptive genetic variation. The combination of landscape resistance models and genetic simulations has broad conservation applications and can facilitate comparisons of adaptive potential within and between landscapes.


Asunto(s)
Ecosistema , Flujo Génico , Modelos Genéticos , Selección Genética , Borrego Cimarrón/genética , Adaptación Biológica/genética , Animales , Simulación por Computador , Clima Desértico , Genotipo , Geografía , Repeticiones de Microsatélite , Análisis Multivariante , Sudoeste de Estados Unidos
2.
Mov Ecol ; 5: 24, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201376

RESUMEN

BACKGROUND: Many studies of animal movement have focused on directed versus area-restricted movement, which rely on correlations between step-length and turn-angles and on stationarity through time to define behavioral states. Although these approaches might apply well to grazing in patchy landscapes, species that either feed for short periods on large, concentrated food sources or cache food exhibit movements that are difficult to model using the traditional metrics of turn-angle and step-length alone. RESULTS: We used GPS telemetry collected from a prey-caching predator, the cougar (Puma concolor, Linnaeus), to test whether combining metrics of site recursion, spatiotemporal clustering, speed, and turning into an index of movement using partial sums, improves the ability to identify caching behavior. The index was used to identify changes in movement characteristics over time and segment paths into behavioral classes. The identification of behaviors from the Path Identification Index (PII) was evaluated using field investigations of cougar activities at GPS locations. We tested for statistical stationarity across behaviors for use of topographic view-sheds. Changes in the frequency and duration of PII were useful for identifying seasonal activities such as migration, gestation, and denning. The comparison of field investigations of cougar activities to behavioral PII classes resulted in an overall classification accuracy of 81%. CONCLUSIONS: Changes in behaviors were reflected in cougars' use of topographic view-sheds, resulting in statistical nonstationarity over time, and revealed important aspects of hunting behavior. Incorporating metrics of site recursion and spatiotemporal clustering revealed the temporal structure in movements of a caching forager. The movement index PII, shows promise for identifying behaviors in species that frequently return to specific locations such as food caches, watering holes, or dens, and highlights the potential role memory and cognitive abilities play in determining animal movements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA