Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2216953120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036972

RESUMEN

In cancer cells, endogenous or therapy-induced DNA damage leads to the abnormal presence of DNA in the cytoplasm, which triggers the activation of cGAS (cyclic GMP-AMP synthase) and STING (stimulator of interferon genes). STAT2 suppresses the cGAMP-induced expression of IRF3-dependent genes by binding to STING, blocking its intracellular trafficking, which is essential for the full response to STING activation. STAT2 reshapes STING signaling by inhibiting the induction of IRF3-dependent, but not NF-κB-dependent genes. This noncanonical activity of STAT2 is regulated independently of its tyrosine phosphorylation but does depend on the phosphorylation of threonine 404, which promotes the formation of a STAT2:STING complex that keeps STING bound to the endoplasmic reticulum (ER) and increases resistance to DNA damage. We conclude that STAT2 is a key negative intracellular regulator of STING, a function that is quite distinct from its function as a transcription factor.


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Proteínas Serina-Treonina Quinasas , Factor de Transcripción STAT2 , ADN/metabolismo , Daño del ADN , Nucleotidiltransferasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factor de Transcripción STAT2/metabolismo , Proteínas de la Membrana/metabolismo
2.
EMBO J ; 39(11): e101573, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32323871

RESUMEN

High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/biosíntesis , Daño del ADN , Regulación Enzimológica de la Expresión Génica , Poli ADP Ribosilación , 2',5'-Oligoadenilato Sintetasa/genética , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Muerte Celular , Línea Celular Transformada , Humanos
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34799452

RESUMEN

Programmed death ligand 1 (PD-L1), an immune-checkpoint protein expressed on cancer cells, also functions independently of the immune system. We found that PD-L1 inhibits the killing of cancer cells in response to DNA damage in an immune-independent manner by suppressing their acute response to type I interferon (IFN; IFN-I). In addition, PD-L1 plays a critical role in sustaining high levels of constitutive expression in cancer cells of a subset of IFN-induced genes, the IFN-related DNA damage resistance signature (IRDS) which, paradoxically, protects cancer cells. The cyclic GMP-AMP synthase-stimulator of the IFN genes (cGAS-STING) pathway is constitutively activated in a subset of cancer cells in the presence of high levels of PD-L1, thus leading to a constitutive, low level of IFN-ß expression, which in turn increases IRDS expression. The constitutive low level of IFN-ß expression is critical for the survival of cancer cells addicted to self-produced IFN-ß. Our study reveals immune-independent functions of PD-L1 that inhibit cytotoxic acute responses to IFN-I and promote protective IRDS expression by supporting protective chronic IFN-I responses, both of which enhance the resistance of cancer cells to DNA damage.


Asunto(s)
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Daño del ADN/fisiología , Interferón Tipo I/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón Tipo I/genética , Interferón beta , Interferón gamma/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nucleotidiltransferasas , Transducción de Señal , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34795058

RESUMEN

High expression of programmed death-ligand 1 (PD-L1) in cancer cells drives immune-independent, cell-intrinsic functions, leading to resistance to DNA-damaging therapies. We find that high expression of the ubiquitin E3 ligase FBXO22 sensitizes nonsmall cell lung cancer (NSCLC) cells to ionizing radiation (IR) and cisplatin, and that activation of FBXO22 by phosphorylation is necessary for this function. Importantly, FBXO22 activates PD-L1 ubiquitination and degradation, which in turn increases the sensitivity of NSCLC cells to DNA damage. Cyclin-dependent kinase 5 (CDK5), aberrantly active in cancer cells, plays a crucial role in increasing the expression of PD-L1 in medulloblastoma [R. D. Dorand et al, Science 353, 399-403 (2016)]. We show in NSCLC cells that inhibiting CDK5 or reducing its expression increases the level of FBXO22, decreases that of PD-L1, and increases the sensitivity of the cells to DNA damage. We conclude that FBXO22 is a substrate of CDK5, and that inhibiting CDK5 reduces PD-L1 indirectly by increasing FBXO22. Pairing inhibitors of CDK5 with immune checkpoint inhibitors may increase the efficacy of immune checkpoint blockade alone or in combination with DNA-damaging therapies.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas F-Box/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa 5 Dependiente de la Ciclina , Daño del ADN , Proteínas F-Box/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Meduloblastoma , Fosforilación , Receptores Citoplasmáticos y Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Ubiquitinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(11): 5071-5076, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30814222

RESUMEN

Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Azacitidina/farmacología , Desmetilación del ADN , Endorribonucleasas/metabolismo , Inmunidad Innata , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Muerte Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Isoenzimas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Radiación Ionizante , Bibliotecas de Moléculas Pequeñas/farmacología
7.
EMBO J ; 32(20): 2751-63, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24065129

RESUMEN

A single high dose of interferon-ß (IFNß) activates powerful cellular responses, in which many anti-viral, pro-apoptotic, and anti-proliferative proteins are highly expressed. Since some of these proteins are deleterious, cells downregulate this initial response rapidly. However, the expression of many anti-viral proteins that do no harm is sustained, prolonging a substantial part of the initial anti-viral response for days and also providing resistance to DNA damage. While the transcription factor ISGF3 (IRF9 and tyrosine-phosphorylated STATs 1 and 2) drives the first rapid response phase, the related factor un-phosphorylated ISGF3 (U-ISGF3), formed by IFNß-induced high levels of IRF9 and STATs 1 and 2 without tyrosine phosphorylation, drives the second prolonged response. The U-ISGF3-induced anti-viral genes that show prolonged expression are driven by distinct IFN stimulated response elements (ISREs). Continuous exposure of cells to a low level of IFNß, often seen in cancers, leads to steady-state increased expression of only the U-ISGF3-dependent proteins, with no sustained increase in other IFNß-induced proteins, and to constitutive resistance to DNA damage.


Asunto(s)
Daño del ADN , Resistencia a la Enfermedad , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Interferón beta/farmacología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética , Virosis/prevención & control , Animales , Antivirales/farmacología , Células Cultivadas , Chlorocebus aethiops , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Escape del Tumor/efectos de los fármacos , Escape del Tumor/genética , Células Vero , Virosis/genética , Virosis/inmunología , Virus/efectos de los fármacos , Virus/inmunología , Virus/patogenicidad
8.
Int J Cancer ; 136(4): E51-61, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25156627

RESUMEN

The mechanism of multicellular drug resistance, defined as the reduced efficacy of chemotherapeutic drugs in solid tumors is incompletely understood. Here we report that colon carcinoma cells cultured as 3D microtissues (spheroids) display dramatic increases in the expression of a subset of type I interferon-(IFN)-stimulated genes (ISGs). A similar gene signature was associated previously with resistance to radiation and chemotherapy, prompting us to examine the underlying biological mechanisms. Analysis of spheroids formed by different tumor cell lines and studies using knock-down of gene expression showed that cell crowding leads to the induction of IFN regulatory factor-9 (IRF9) which together with STAT2 and independently of IFNs, is necessary for ISG upregulation. Increased expression of IRF9 alone was sufficient to induce the ISG subset in monolayer cells and to confer increased resistance to clinically used cytotoxic drugs. Our data reveal a novel mechanism of regulation of a subset of ISGs, leading to drug resistance in solid tumors.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Apoptosis , Comunicación Celular , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Interferones/fisiología , Factor de Transcripción STAT2/metabolismo , Activación Transcripcional
9.
Cell Res ; 31(2): 206-218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32759968

RESUMEN

Type I interferons (IFN-I) protect us from viral infections. Signal transducer and activator of transcription 2 (STAT2) is a key component of interferon-stimulated gene factor 3 (ISGF3), which drives gene expression in response to IFN-I. Using electron microscopy, we found that, in naive cells, U-STAT2, lacking the activating tyrosine phosphorylation, forms a heterodimer with U-STAT1 in an inactive, anti-parallel conformation. A novel phosphorylation of STAT2 on T404 promotes IFN-I signaling by disrupting the U-STAT1-U-STAT2 dimer, facilitating the tyrosine phosphorylation of STATs 1 and 2 and enhancing the DNA-binding ability of ISGF3. IKK-ε, activated by virus infection, phosphorylates T404 directly. Mice with a T-A mutation at the corresponding residue (T403) are highly susceptible to virus infections. We conclude that T404 phosphorylation drives a critical conformational switch that, by boosting the response to IFN-I in infected cells, enables a swift and efficient antiviral defense.


Asunto(s)
Herpes Simple/metabolismo , Multimerización de Proteína/genética , Infecciones por Rhabdoviridae/metabolismo , Factor de Transcripción STAT1/química , Factor de Transcripción STAT2/química , Transducción de Señal/genética , Simplexvirus/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Animales , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/virología , Células HEK293 , Células HeLa , Herpes Simple/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Conformación Proteica , Interferencia de ARN , Infecciones por Rhabdoviridae/virología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA