Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38503283

RESUMEN

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Asunto(s)
ARN , Gránulos de Estrés , Citoplasma , ARN Mensajero/genética , Estrés Fisiológico , Humanos , Células HeLa
2.
Nature ; 624(7990): 173-181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030723

RESUMEN

In diploid organisms, biallelic gene expression enables the production of adequate levels of mRNA1,2. This is essential for haploinsufficient genes, which require biallelic expression for optimal function to prevent the onset of developmental disorders1,3. Whether and how a biallelic or monoallelic state is determined in a cell-type-specific manner at individual loci remains unclear. MSL2 is known for dosage compensation of the male X chromosome in flies. Here we identify a role of MSL2 in regulating allelic expression in mammals. Allele-specific bulk and single-cell analyses in mouse neural progenitor cells revealed that, in addition to the targets showing biallelic downregulation, a class of genes transitions from biallelic to monoallelic expression after MSL2 loss. Many of these genes are haploinsufficient. In the absence of MSL2, one allele remains active, retaining active histone modifications and transcription factor binding, whereas the other allele is silenced, exhibiting loss of promoter-enhancer contacts and the acquisition of DNA methylation. Msl2-knockout mice show perinatal lethality and heterogeneous phenotypes during embryonic development, supporting a role for MSL2 in regulating gene dosage. The role of MSL2 in preserving biallelic expression of specific dosage-sensitive genes sets the stage for further investigation of other factors that are involved in allelic dosage compensation in mammalian cells, with considerable implications for human disease.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Ubiquitina-Proteína Ligasas , Animales , Femenino , Masculino , Ratones , Metilación de ADN , Compensación de Dosificación (Genética) , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Haploinsuficiencia , Histonas/metabolismo , Ratones Noqueados , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nature ; 589(7840): 137-142, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208948

RESUMEN

Confinement of the X chromosome to a territory for dosage compensation is a prime example of how subnuclear compartmentalization is used to regulate transcription at the megabase scale. In Drosophila melanogaster, two sex-specific non-coding RNAs (roX1 and roX2) are transcribed from the X chromosome. They associate with the male-specific lethal (MSL) complex1, which acetylates histone H4 lysine 16 and thereby induces an approximately twofold increase in expression of male X-linked genes2,3. Current models suggest that X-over-autosome specificity is achieved by the recognition of cis-regulatory DNA high-affinity sites (HAS) by the MSL2 subunit4,5. However, HAS motifs are also found on autosomes, indicating that additional factors must stabilize the association of the MSL complex with the X chromosome. Here we show that the low-complexity C-terminal domain (CTD) of MSL2 renders its recruitment to the X chromosome sensitive to roX non-coding RNAs. roX non-coding RNAs and the MSL2 CTD form a stably condensed state, and functional analyses in Drosophila and mammalian cells show that their interactions are crucial for dosage compensation in vivo. Replacing the CTD of mammalian MSL2 with that from Drosophila and expressing roX in cis is sufficient to nucleate ectopic dosage compensation in mammalian cells. Thus, the condensing nature of roX-MSL2CTD is the primary determinant for specific compartmentalization of the X chromosome in Drosophila.


Asunto(s)
Compartimento Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citología , Drosophila/genética , ARN/metabolismo , Factores de Transcripción/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Animales , Compartimento Celular/genética , Línea Celular , Proteínas de Unión al ADN/química , Drosophila/metabolismo , Proteínas de Drosophila/química , Femenino , Humanos , Masculino , Ratones , Conformación de Ácido Nucleico , ARN/genética , Factores de Transcripción/química
4.
Genes Dev ; 33(7-8): 452-465, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819819

RESUMEN

Nucleosomal organization at gene promoters is critical for transcription, with a nucleosome-depleted region (NDR) at transcription start sites (TSSs) being required for transcription initiation. How NDRs and the precise positioning of the +1 nucleosomes are maintained on active genes remains unclear. Here, we report that the Drosophila nonspecific lethal (NSL) complex is necessary to maintain this stereotypical nucleosomal organization at promoters. Upon NSL1 depletion, nucleosomes invade the NDRs at TSSs of NSL-bound genes. NSL complex member NSL3 binds to TATA-less promoters in a sequence-dependent manner. The NSL complex interacts with the NURF chromatin remodeling complex and is necessary and sufficient to recruit NURF to target promoters. Not only is the NSL complex essential for transcription, but it is required for accurate TSS selection for genes with multiple TSSs. Furthermore, loss of the NSL complex leads to an increase in transcriptional noise. Thus, the NSL complex establishes a canonical nucleosomal organization that enables transcription and determines TSS fidelity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Nucleosomas/genética , Transcripción Genética/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Iniciación de la Transcripción Genética , Proteínas de Transporte Vesicular
5.
Mol Cell ; 38(6): 827-41, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20620954

RESUMEN

Here, we report the biochemical characterization of the nonspecific lethal (NSL) complex (NSL1, NSL2, NSL3, MCRS2, MBD-R2, and WDS) that associates with the histone acetyltransferase MOF in both Drosophila and mammals. Chromatin immunoprecipitation-Seq analysis revealed association of NSL1 and MCRS2 with the promoter regions of more than 4000 target genes, 70% of these being actively transcribed. This binding is functional, as depletion of MCRS2, MBD-R2, and NSL3 severely affects gene expression genome wide. The NSL complex members bind to their target promoters independently of MOF. However, depletion of MCRS2 affects MOF recruitment to promoters. NSL complex stability is interdependent and relies mainly on the presence of NSL1 and MCRS2. Tethering of NSL3 to a heterologous promoter leads to robust transcription activation and is sensitive to the levels of NSL1, MCRS2, and MOF. Taken together, we conclude that the NSL complex acts as a major transcriptional regulator in Drosophila.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Genoma de los Insectos , Histona Acetiltransferasas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética
6.
PLoS Genet ; 8(6): e1002736, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22723752

RESUMEN

MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Nucleares , ARN Polimerasa II , Factores de Transcripción , Acetilación , Animales , Sitios de Unión , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Genoma de los Insectos , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular
7.
Sci Adv ; 9(34): eadh5598, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624894

RESUMEN

Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.


Asunto(s)
Núcleo Celular , Proteínas Hedgehog , Proteínas Hedgehog/genética , Regulación de la Expresión Génica , Diferenciación Celular/genética , Fibroblastos
8.
Nat Cell Biol ; 22(7): 828-841, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541879

RESUMEN

Mutations in chromatin-modifying complexes and metabolic enzymes commonly underlie complex human developmental syndromes affecting multiple organs. A major challenge is to determine how disease-causing genetic lesions cause deregulation of homeostasis in unique cell types. Here we show that neural-specific depletion of three members of the non-specific lethal (NSL) chromatin complex-Mof, Kansl2 or Kansl3-unexpectedly leads to severe vascular defects and brain haemorrhaging. Deregulation of the epigenetic landscape induced by the loss of the NSL complex in neural cells causes widespread metabolic defects, including an accumulation of free long-chain fatty acids (LCFAs). Free LCFAs induce a Toll-like receptor 4 (TLR4)-NFκB-dependent pro-inflammatory signalling cascade in neighbouring vascular pericytes that is rescued by TLR4 inhibition. Pericytes display functional changes in response to LCFA-induced activation that result in vascular breakdown. Our work establishes that neurovascular function is determined by the neural metabolic environment.


Asunto(s)
Núcleo Celular/patología , Cromatina/metabolismo , Histona Acetiltransferasas/fisiología , Inflamación/patología , Neovascularización Patológica/patología , Neuronas/patología , Pericitos/patología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Ácidos Grasos/metabolismo , Femenino , Feto/citología , Feto/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pericitos/metabolismo
9.
iScience ; 21: 273-287, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31677479

RESUMEN

Since the generation of cell-type specific knockout models, the importance of inter-cellular communication between neural, vascular, and microglial cells during neural development has been increasingly appreciated. However, the extent of communication between these major cell populations remains to be systematically mapped. Here, we describe EMBRACE (embryonic brain cell extraction using FACS), a method to simultaneously isolate neural, mural, endothelial, and microglial cells to more than 94% purity in ∼4 h. Utilizing EMBRACE we isolate, transcriptionally analyze, and build a cell-cell communication map of the developing mouse brain. We identify 1,710 unique ligand-receptor interactions between neural, endothelial, mural, and microglial cells in silico and experimentally confirm the APOE-LDLR, APOE-LRP1, VTN-KDR, and LAMA4-ITGB1 interactions in the E14.5 brain. We provide our data via the searchable "Brain interactome explorer", available at https://mpi-ie.shinyapps.io/braininteractomeexplorer/. Together, this study provides a comprehensive map that reveals the richness of communication within the developing brain.

10.
Nat Struct Mol Biol ; 23(6): 580-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27183194

RESUMEN

Proper gene expression requires coordinated interplay among transcriptional coactivators, transcription factors and the general transcription machinery. We report here that MSL1, a central component of the dosage compensation complex in Drosophila melanogaster and Drosophila virilis, displays evolutionarily conserved sex-independent binding to promoters. Genetic and biochemical analyses reveal a functional interaction of MSL1 with CDK7, a subunit of the Cdk-activating kinase (CAK) complex of the general transcription factor TFIIH. Importantly, MSL1 depletion leads to decreased phosphorylation of Ser5 of RNA polymerase II. In addition, we demonstrate that MSL1 is a phosphoprotein, and transgenic flies expressing MSL1 phosphomutants show mislocalization of the histone acetyltransferase MOF and histone H4 K16 acetylation, thus ultimately causing male lethality due to a failure of dosage compensation. We propose that, by virtue of its interaction with components of the general transcription machinery, MSL1 exists in different phosphorylation states, thereby modulating transcription in flies.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Cromatina/genética , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/genética , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Eliminación de Gen , Masculino , Mutación , Proteínas Nucleares/genética , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Serina/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , Quinasa Activadora de Quinasas Ciclina-Dependientes
11.
Dev Cell ; 22(3): 610-24, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22421046

RESUMEN

The histone H4 lysine 16 (H4K16)-specific acetyltransferase MOF is part of two distinct complexes involved in X chromosome dosage compensation and autosomal transcription regulation. Here we show that the MOF chromobarrel domain is essential for H4K16 acetylation throughout the Drosophila genome and is required for spreading of the male-specific lethal (MSL) complex on the X chromosome. The MOF chromobarrel domain directly interacts with nucleic acids and potentiates MOF's enzymatic activity after chromatin binding, making it a unique example of a chromo-like domain directly controlling acetylation activity in vivo. We also show that the Drosophila-specific N terminus of MOF has evolved to perform sex-specific functions. It modulates nucleosome binding and HAT activity and controls MSL complex assembly, thus regulating MOF function in dosage compensation. We propose that MOF has been especially tailored to achieve tight regulation of its enzymatic activity and enable its dual role on X and autosomes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Genoma de los Insectos , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Acetilación , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/genética , Masculino , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
12.
Nat Struct Mol Biol ; 18(2): 142-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217699

RESUMEN

The male-specific lethal (MSL) complex is required for dosage compensation in Drosophila melanogaster, and analogous complexes exist in mammals. We report structures of binary complexes of mammalian MSL3 and the histone acetyltransferase (HAT) MOF with consecutive segments of MSL1. MSL1 interacts with MSL3 as an extended chain forming an extensive hydrophobic interface, whereas the MSL1-MOF interface involves electrostatic interactions between the HAT domain and a long helix of MSL1. This structure provides insights into the catalytic mechanism of MOF and enables us to show analogous interactions of MOF with NSL1. In Drosophila, selective disruption of Msl1 interactions with Msl3 or Mof severely affects Msl1 targeting to the body of dosage-compensated genes and several high-affinity sites, without affecting promoter binding. We propose that Msl1 acts as a scaffold for MSL complex assembly to achieve specific targeting to the X chromosome.


Asunto(s)
Compensación de Dosificación (Genética) , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Cromosómicas no Histona , Cristalografía por Rayos X , Proteínas de Unión al ADN , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Histona Acetiltransferasas/genética , Humanos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Proteínas Nucleares/metabolismo , Conformación Proteica , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
13.
Mol Cell ; 21(6): 811-23, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16543150

RESUMEN

Dosage compensation in Drosophila is dependent on MSL proteins and involves hypertranscription of the male X chromosome, which ensures equal X-linked gene expression in both sexes. Here, we report the purification of enzymatically active MSL complexes from Drosophila embryos, Schneider cells, and human HeLa cells. We find a stable association of the histone H4 lysine 16-specific acetyltransferase MOF with the RNA/protein containing MSL complex as well as with an evolutionary conserved complex. We show that the MSL complex interacts with several components of the nuclear pore, in particular Mtor/TPR and Nup153. Strikingly, knockdown of Mtor or Nup153 results in loss of the typical MSL X-chromosomal staining and dosage compensation in Drosophila male cells but not in female cells. These results reveal an unexpected physical and functional connection between nuclear pore components and chromatin regulation through MSL proteins, highlighting the role of nucleoporins in gene regulation in higher eukaryotes.


Asunto(s)
Compensación de Dosificación (Genética) , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulación de la Expresión Génica , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Acetiltransferasas , Animales , Animales Modificados Genéticamente , Línea Celular , Cromatografía de Afinidad , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/química , Evolución Molecular , Femenino , Células HeLa , Humanos , Masculino , Espectrometría de Masas , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Nucleares/química , Proteínas Quinasas/metabolismo , Proteínas Quinasas/fisiología , Serina-Treonina Quinasas TOR , Factores de Transcripción/química , Cromosoma X/genética
14.
Mol Cell ; 11(5): 1265-77, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12769850

RESUMEN

Dosage compensation ensures equal expression of X-linked genes in males and females. In Drosophila, equalization is achieved by hypertranscription of the male X chromosome. This process requires an RNA/protein containing dosage compensation complex (DCC). Here we use RNA interference of individual DCC components to define the order of complex assembly in Schneider cells. We show that interaction of MOF with MSL-3 leads to specific acetylation of MSL-3 at a single lysine residue adjacent to one of its chromodomains. We observe that localization of MSL-3 to the X chromosome is RNA dependent and acetylation sensitive. We find that the acetylation status of MSL-3 determines its interaction with roX2 RNA. Furthermore, we find that RPD3 interacts with MSL-3 and that MSL-3 can be deacetylated by the RPD3 complex. We propose that regulated acetylation of MSL-3 may provide a mechanistic explanation for spreading of the dosage compensation complex along the male X chromosome.


Asunto(s)
Acetiltransferasas/genética , Compensación de Dosificación (Genética) , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Cromosoma X/genética , Acetilación , Acetiltransferasas/deficiencia , Animales , Proteínas de Unión al ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Histona Acetiltransferasas , Histona Desacetilasa 1 , Histona Desacetilasas , Lisina/genética , Lisina/metabolismo , Sustancias Macromoleculares , Masculino , Proteínas Nucleares/deficiencia , Estructura Terciaria de Proteína/genética , ARN/genética , ARN/metabolismo , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras , Factores Sexuales , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA