Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Genes Cells ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965067

RESUMEN

In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.

2.
Genes Cells ; 29(4): 282-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351850

RESUMEN

The flagellar components of Vibrio spp., PomA and PomB, form a complex that transduces sodium ion and contributes to rotate flagella. The transmembrane protein PomB is attached to the basal body T-ring by its periplasmic region and has a plug segment following the transmembrane helix to prevent ion flux. Previously we showed that PomB deleted from E41 to R120 (Δ41-120) was functionally comparable to the full-length PomB. In this study, three deletions after the plug region, PomB (Δ61-120), PomB (Δ61-140), and PomB (Δ71-150), were generated. PomB (Δ61-120) conferred motility, whereas the other two mutants showed almost no motility in soft agar plate; however, we observed some swimming cells with speed comparable for the wild-type cells. When the two PomB mutants were introduced into a wild-type strain, the swimming ability was not affected by the mutant PomBs. Then, we purified the mutant PomAB complexes to confirm the stator formation. When plug mutations were introduced into the PomB mutants, the reduced motility by the deletion was rescued, suggesting that the stator was activated. Our results indicate that the deletions prevent the stator activation and the linker and plug regions, from E41 to S150, are not essential for the motor function of PomB but are important for its regulation.


Asunto(s)
Proteínas Bacterianas , Peptidoglicano , Proteínas Bacterianas/metabolismo , Peptidoglicano/análisis , Peptidoglicano/genética , Peptidoglicano/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Flagelos/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo
3.
Genes Cells ; 27(3): 157-172, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35073606

RESUMEN

Typical second messengers include cyclic AMP (cAMP), cyclic GMP (cGMP), and inositol phosphate. In bacteria, cyclic diguanylate (c-di-GMP), which is not used in animals, is widely used as a second messenger for environmental responses. Initially found as a regulator of cellulose synthesis, this small molecule is known to be widely present in bacteria. A wide variety of synthesis and degradation enzymes for c-di-GMP exist, and the activities of effector proteins are regulated by changing the cellular c-di-GMP concentration in response to the environment. It has been shown well that c-di-GMP plays an essential role in pathogenic cycle and is involved in flagellar motility in Vibrio cholerae. In this review, we aim to explain the direct or indirect regulatory mechanisms of c-di-GMP in bacteria, focusing on the study of c-di-GMP in Vibrio spp. and in flagella, which are our research subjects.


Asunto(s)
Proteínas de Escherichia coli , Vibrio cholerae , Proteínas Bacterianas/genética , Biopelículas , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Sistemas de Mensajero Secundario/fisiología , Vibrio cholerae/metabolismo
4.
Genes Cells ; 27(9): 568-578, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35842835

RESUMEN

Marine bacterium Vibrio alginolyticus forms a single flagellum at a cell pole. In Vibrio, two proteins (GTPase FlhF and ATPase FlhG) regulate the number of flagella. We previously isolated the NMB155 mutant that forms multiple flagella despite the absence of mutations in flhF and flhG. Whole-genome sequencing of NMB155 identified an E9K mutation in FliM that is a component of C-ring in the flagellar rotor. Mutations in FliM result in defects in flagellar formation (fla) and flagellar rotation (che or mot); however, there are a few reports indicating that FliM mutations increase the number of flagella. Here, we determined that the E9K mutation confers the multi-flagellar phenotype and also the che phenotype. The co-expression of wild-type FliM and FliM-E9K indicated that they were competitive in regard to determining the flagellar number. The ATPase activity of FlhG has been correlated with the number of flagella. We observed that the ATPase activity of FlhG was increased by the addition of FliM but not by the addition of FliM-E9K in vitro. This indicates that FliM interacts with FlhG to increase its ATPase activity, and the E9K mutation may inhibit this interaction. FliM may control the ATPase activity of FlhG to properly regulate the number of the polar flagellum at the cell pole.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Vibrio alginolyticus , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Mutación , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
5.
J Bacteriol ; 204(11): e0032022, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314831

RESUMEN

Vibrio alginolyticus has a flagellum at the cell pole, and the fla genes, involved in its formation, are hierarchically regulated in several classes. FlaK (also called FlrA) is an ortholog of Pseudomonas aeruginosa FleQ, an AAA+ ATPase that functions as a master regulator for all later fla genes. In this study, we conducted mutational analysis of FlaK to examine its ATPase activity, ability to form a multimeric structure, and function in flagellation. We cloned flaK and confirmed that its deletion caused a nonflagellated phenotype. We substituted amino acids at the ATP binding/hydrolysis site and at the putative subunit interfaces in a multimeric structure. Mutations in these sites abolished both ATPase activity and the ability of FlaK to induce downstream flagellar gene expression. The L371E mutation, at the putative subunit interface, abolished flagellar gene expression but retained ATPase activity, suggesting that ATP hydrolysis is not sufficient for flagellar gene expression. We also found that FlhG, a negative flagellar biogenesis regulator, suppressed the ATPase activity of FlaK. The 20 FlhG C-terminal residues are critical for reducing FlaK ATPase activity. Chemical cross-linking and size exclusion chromatography revealed that FlaK mostly exists as a dimer in solution and can form multimers, independent of ATP. However, ATP induced the interaction between FlhG and FlaK to form a large complex. The in vivo effects of FlhG on FlaK, such as multimer formation and/or DNA binding, are important for gene regulation. IMPORTANCE FlaK is an NtrC-type activator of the AAA+ ATPase subfamily of σ54-dependent promoters of flagellar genes. FlhG, a MinD-like ATPase, negatively regulates the polar flagellar number by collaborating with FlhF, an FtsY-like GTPase. We found that FlaK and FlhG interact in the presence of ATP to form a large complex. Mutational analysis revealed the importance of FlaK ATPase activity in flagellar gene expression and provided a model of the Vibrio molecular mechanism that regulates the flagellar number.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al GTP Monoméricas , Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Flagelos/metabolismo , Vibrio alginolyticus/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Regulación Bacteriana de la Expresión Génica
6.
Biochem Biophys Res Commun ; 631: 78-85, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36179499

RESUMEN

Many motile bacteria swim and swarm toward favorable environments using the flagellum, which is rotated by a motor embedded in the inner membrane. The motor is composed of the rotor and the stator, and the motor torque is generated by the change of the interaction between the rotor and the stator induced by the ion flow through the stator. A stator unit consists of two types of membrane proteins termed A and B. Recent cryo-EM studies on the stators from mesophiles revealed that the stator consists of five A and two B subunits, whereas the low-resolution EM analysis showed that purified hyperthermophilic MotA forms a tetramer. To clarify the assembly formation and factors enhancing thermostability of the hyperthermophilic stator, we determined the cryo-EM structure of MotA from Aquifex aeolicus (Aa-MotA), a hyperthermophilic bacterium, at 3.42 Å resolution. Aa-MotA forms a pentamer with pseudo C5 symmetry. A simulated model of the Aa-MotA5MotB2 stator complex resembles the structures of mesophilic stator complexes, suggesting that Aa-MotA can assemble into a pentamer equivalent to the stator complex without MotB. The distribution of hydrophobic residues of MotA pentamers suggests that the extremely hydrophobic nature in the subunit boundary and the transmembrane region is a key factor to stabilize hyperthermophilic Aa-MotA.


Asunto(s)
Proteínas Bacterianas , Flagelos , Archaea/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Flagelos/química , Proteínas de la Membrana/metabolismo , Proteínas Motoras Moleculares/metabolismo
7.
Genes Cells ; 26(11): 927-937, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34487583

RESUMEN

Bacteria exhibit chemotaxis by controlling flagellar rotation to move toward preferred places or away from nonpreferred places. The change in rotation is triggered by the binding of the chemotaxis signaling protein CheY-phosphate (CheY-P) to the C-ring in the flagellar motor. Some specific bacteria, including Vibrio spp. and Shewanella spp., have a single transmembrane protein called ZomB. ZomB is essential for controlling the flagellar rotational direction in Shewanella putrefaciens and Vibrio parahaemolyticus. In this study, we confirmed that the zomB deletion results only in the counterclockwise (CCW) rotation of the motor in Vibrio alginolyticus as previously reported in other bacteria. We found that ZomB is not required for a clockwise-locked phenotype caused by mutations in fliG and fliM, and that ZomB is essential for CW rotation induced by overproduction of CheY-P. Purified ZomB proteins form multimers, suggesting that ZomB may function as a homo-oligomer. These observations imply that ZomB interacts with protein(s) involved in either flagellar motor rotation, chemotaxis, or both. We provide the evidence that ZomB is a new player in chemotaxis and is required for the rotational control in addition to CheY in Vibrio alginolyticus.


Asunto(s)
Proteínas de Escherichia coli , Vibrio alginolyticus , Proteínas Bacterianas/genética , Quimiotaxis , Flagelos , Proteínas de la Membrana/genética
8.
Microbiol Immunol ; 66(2): 75-95, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34842307

RESUMEN

In 1980s, the most genes involved in the bacterial flagellar function and formation had been isolated, although many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp.


Asunto(s)
Proteínas Bacterianas , Vibrio , Proteínas Bacterianas/genética , Flagelos/genética , Vibrio/genética , Virulencia
9.
J Bacteriol ; 203(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33619152

RESUMEN

The bacterial flagellum is the motility organelle powered by a rotary motor. The rotor and stator elements of the motor are located in the cytoplasmic membrane and cytoplasm. The stator units assemble around the rotor, and an ion flux (typically H+ or Na+) conducted through a channel of the stator induces conformational changes that generate rotor torque. Electrostatic interactions between the stator protein PomA in Vibrio (MotA in Escherichia coli) and the rotor protein FliG have been shown by genetic analyses, but have not been demonstrated biochemically. Here, we used site-directed photo- and disulfide-crosslinking to provide direct evidence for the interaction. We introduced a UV-reactive amino acid, p-benzoyl-L-phenylalanine (pBPA), into the cytoplasmic region of PomA or the C-terminal region of FliG in intact cells. After UV irradiation, pBPA inserted at a number of positions in PomA formed a crosslink with FliG. PomA residue K89 gave the highest yield of crosslinks, suggesting that it is the PomA residue nearest to FliG. UV-induced crosslinking stopped motor rotation, and the isolated hook-basal body contained the crosslinked products. pBPA inserted to replace residues R281 or D288 in FliG formed crosslinks with the Escherichia coli stator protein, MotA. A cysteine residue introduced in place of PomA K89 formed disulfide crosslinks with cysteine inserted in place of FliG residues R281 and D288, and some other flanking positions. These results provide the first demonstration of direct physical interaction between specific residues in FliG and PomA/MotA.ImportanceThe bacterial flagellum is a unique organelle that functions as a rotary motor. The interaction between the stator and rotor is indispensable for stator assembly into the motor and the generation of motor torque. However, the interface of the stator-rotor interaction has only been defined by mutational analysis. Here, we detected the stator-rotor interaction using site-directed photo- and disulfide-crosslinking approaches. We identified several residues in the PomA stator, especially K89, that are in close proximity to the rotor. Moreover, we identified several pairs of stator and rotor residues that interact. This study directly demonstrates the nature of the stator-rotor interaction and suggests how stator units assemble around the rotor and generate torque in the bacterial flagellar motor.

10.
J Bacteriol ; 203(16): e0015921, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34096782

RESUMEN

Bacterial flagella are the best-known rotational organelles in the biological world. The spiral-shaped flagellar filaments that extend from the cell surface rotate like a screw to create a propulsive force. At the base of the flagellar filament lies a protein motor that consists of a stator and a rotor embedded in the membrane. The stator is composed of two types of membrane subunits, PomA (similar to MotA in Escherichia coli) and PomB (similar to MotB in E. coli), which are energy converters that assemble around the rotor to couple rotation with the ion flow. Recently, stator structures, where two MotB molecules are inserted into the center of a ring made of five MotA molecules, were reported. This structure inspired a model in which the MotA ring rotates around the MotB dimer in response to ion influx. Here, we focus on the Vibrio PomB plug region, which is involved in flagellar motor activation. We investigated the plug region using site-directed photo-cross-linking and disulfide cross-linking experiments. Our results demonstrated that the plug interacts with the extracellular short loop region of PomA, which is located between transmembrane helices 3 and 4. Although the motor stopped rotating after cross-linking, its function recovered after treatment with a reducing reagent that disrupted the disulfide bond. Our results support the hypothesis, which has been inferred from the stator structure, that the plug region terminates the ion influx by blocking the rotation of the rotor as a spanner. IMPORTANCE The biological flagellar motor resembles a mechanical motor. It is composed of a stator and a rotor. The force is transmitted to the rotor by the gear-like stator movements. It has been proposed that the pentamer of MotA subunits revolves around the axis of the B subunit dimer in response to ion flow. The plug region of the B subunit regulates the ion flow. Here, we demonstrated that the ion flow was terminated by cross-linking the plug region of PomB with PomA. These findings support the rotation hypothesis and explain the role of the plug region in blocking the rotation of the stator unit.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Flagelos/metabolismo , Vibrio alginolyticus/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/química , Flagelos/genética , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Vibrio alginolyticus/química , Vibrio alginolyticus/genética , Vibrio alginolyticus/crecimiento & desarrollo
11.
J Bacteriol ; 203(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33619151

RESUMEN

The MS ring is a part of the flagellar basal body and formed by 34 subunits of FliF, which consists of a large periplasmic region and two transmembrane segments connected to the N- and C-terminal regions facing the cytoplasm. A cytoplasmic protein, FlhF, which determines the position and number of the basal body, supports MS ring formation in the membrane in Vibrio species. In this study, we constructed FliF deletion mutants that lack 30 or 50 residues from the N-terminus (ΔN30 and ΔN50), and 83 (ΔC83) or 110 residues (ΔC110) at the C-terminus. The N-terminal deletions were functional and conferred motility of Vibrio cells, whereas the C-terminal deletions were nonfunctional. The mutants were expressed in Escherichia coli to determine whether an MS ring could still be assembled. When co-expressing ΔN30FliF or ΔN50FliF with FlhF, fewer MS rings were observed than with the expression of wild-type FliF, in the MS ring fraction, suggesting that the N-terminus interacts with FlhF. MS ring formation is probably inefficient without FlhF. The deletion of the C-terminal cytoplasmic region did not affect the ability of FliF to form an MS ring because a similar number of MS rings were observed for ΔC83FliF as with wild-type FliF, although further deletion of the second transmembrane segment (ΔC110FliF) abolished it. These results suggest that the terminal regions of FliF have distinct roles; the N-terminal region for efficient MS ring formation and the C-terminal region for MS ring function. The second transmembrane segment is indispensable for MS ring assembly.ImportanceThe bacterial flagellum is a supramolecular architecture involved in cell motility. At the base of the flagella, a rotary motor that begins to construct an MS ring in the cytoplasmic membrane comprises 34 transmembrane proteins (FliF). Here, we investigated the roles of the N and C terminal regions of FliF, which are MS rings. Unexpectedly, the cytoplasmic regions of FliF are not indispensable for the formation of the MS ring, but the N-terminus appears to assist in ring formation through recruitment of FlhF, which is essential for flagellar formation. The C-terminus is essential for motor formation or function.

12.
Mol Microbiol ; 114(2): 279-291, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259388

RESUMEN

Bacterial flagella are nanomachines that drive bacteria motility and taxis in response to environmental changes. Whether flagella are permanent cell structures and, if not, the circumstances and timing of their production and loss during the bacterial life cycle remain poorly understood. Here we used the single polar flagellum of Vibrio alginolyticus as our model and implementing in vivo fluorescence imaging revealed that the percentage of flagellated bacteria (PFB) in a population varies substantially across different growth phases. In the early-exponential phase, the PFB increases rapidly through the widespread production of flagella. In the mid-exponential phase, the PFB peaks at around 76% and the partitioning of flagella between the daughter cells are 1:1 and strictly at the old poles. After entering the stationary phase, the PFB starts to decline, mainly because daughter cells stop making new flagella after cell division. Interestingly, we observed that bacteria can actively abandon flagella after prolonged stationary culturing, though cell division has long been suspended. Further experimental investigations confirmed that flagella were ejected in V. alginolyticus, starting from breakage in the rod. Our results highlight the dynamic production and loss of flagella during the bacterial life cycle. IMPORTANCE: Flagella motility is critical for many bacterial species. The bacterial flagellum is made up of about 20 different types of proteins in its final structure and can be self-assembled. The current understanding of the lifetime and durability of bacterial flagella is very limited. In the present study, we monitored Vibrio alginolyticus flagellar assembly and loss by in vivo fluorescence labeling, and found that the percentage of flagellated bacteria varies substantially across different growth phases. The production of flagella was synchronized with cell growth but stopped when cells entered the stationary phase. Surprisingly, we observed that bacteria can actively abandon flagella after prolonged stationary culturing, as well as in the low glucose buffering medium. We then confirmed the ejection of flagella in V. alginolyticus started with breakage of the rod. Our results highlight the dynamic production and loss of flagella during the bacterial life cycle.


Asunto(s)
Flagelos/metabolismo , Vibrio alginolyticus/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo Celular/genética , División Celular/fisiología , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Vibrio alginolyticus/citología
13.
Genes Cells ; 25(4): 279-287, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32012412

RESUMEN

FlhG is a MinD/ParA-type ATPase that works as a negative regulator for flagellar biogenesis. In Vibrio alginolyticus, FlhG functions antagonistically with the positive regulator FlhF to generate a single polar flagellum. Here, we examined the effects of ADP and ATP on the aggregation and dimerization of Vibrio FlhG. Purified FlhG aggregated after exposure to low NaCl conditions, and its aggregation was suppressed in the presence of ADP or ATP. FlhG mutants at putative ATP-binding (K31A) or catalytic (D60A) residues showed similar aggregation profiles to the wild type, but ATP caused strong aggregation of the ATPase-stimulated D171A mutant although ADP significantly suppressed the aggregation. Results of size exclusion chromatography of purified FlhG or Vibrio cell lysates suggested that FlhG exists as a monomer in solution, and ATP does not induce FlhG dimerization. The K31A and D60A mutants eluted at monomer fractions regardless of nucleotides, but ATP shifted the elution peak of the D171A mutant to slightly earlier, presumably because of a subtle conformational change. Our results suggest that monomeric FlhG can function in vivo, whose active conformation aggregates easily.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vibrio alginolyticus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Flagelos/metabolismo , Vibrio alginolyticus/metabolismo
14.
Genes Cells ; 25(1): 6-21, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31957229

RESUMEN

Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement-producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.


Asunto(s)
Movimiento Celular/genética , Movimiento Celular/fisiología , Flagelos/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Bacterias , Evolución Biológica , Dineínas/metabolismo , Evolución Molecular , Flagelos/genética , Humanos , Cinesinas/metabolismo , Miosinas/metabolismo , Filogenia
15.
J Bacteriol ; 202(4)2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31767780

RESUMEN

The bacterial flagellum is a biological nanomachine that rotates to allow bacteria to swim. For flagellar rotation, torque is generated by interactions between a rotor and a stator. The stator, which is composed of MotA and MotB subunit proteins in the membrane, is thought to bind to the peptidoglycan (PG) layer, which anchors the stator around the rotor. Detailed information on the stator and its interactions with the rotor remains unclear. Here, we deployed cryo-electron tomography and genetic analysis to characterize in situ structure of the bacterial flagellar motor in Vibrio alginolyticus, which is best known for its polar sheathed flagellum and high-speed rotation. We determined in situ structure of the motor at unprecedented resolution and revealed the unique protein-protein interactions among Vibrio-specific features, namely the H ring and T ring. Specifically, the H ring is composed of 26 copies of FlgT and FlgO, and the T ring consists of 26 copies of a MotX-MotY heterodimer. We revealed for the first time a specific interaction between the T ring and the stator PomB subunit, providing direct evidence that the stator unit undergoes a large conformational change from a compact form to an extended form. The T ring facilitates the recruitment of the extended stator units for the high-speed motility in Vibrio species.IMPORTANCE The torque of flagellar rotation is generated by interactions between a rotor and a stator; however, detailed structural information is lacking. Here, we utilized cryo-electron tomography and advanced imaging analysis to obtain a high-resolution in situ flagellar basal body structure in Vibrio alginolyticus, which is a Gram-negative marine bacterium. Our high-resolution motor structure not only revealed detailed protein-protein interactions among unique Vibrio-specific features, the T ring and H ring, but also provided the first structural evidence that the T ring interacts directly with the periplasmic domain of the stator. Docking atomic structures of key components into the in situ motor map allowed us to visualize the pseudoatomic architecture of the polar sheathed flagellum in Vibrio spp. and provides novel insight into its assembly and function.


Asunto(s)
Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Flagelos/química , Vibrio alginolyticus/ultraestructura , Proteínas de la Membrana Bacteriana Externa/química , Flagelos/ultraestructura , Proteínas Motoras Moleculares/química , Conformación Proteica , Vibrio alginolyticus/química
16.
J Bacteriol ; 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32482724

RESUMEN

The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.

17.
J Bacteriol ; 202(5)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31843800

RESUMEN

Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Bradyrhizobium/clasificación , Bradyrhizobium/ultraestructura , Flagelos , Regulación Bacteriana de la Expresión Génica , Mutación , Filogenia
18.
Proc Natl Acad Sci U S A ; 114(41): 10966-10971, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973904

RESUMEN

Vibrio species are Gram-negative rod-shaped bacteria that are ubiquitous and often highly motile in aqueous environments. Vibrio swimming motility is driven by a polar flagellum covered with a membranous sheath, but this sheathed flagellum is not well understood at the molecular level because of limited structural information. Here, we use Vibrio alginolyticus as a model system to study the sheathed flagellum in intact cells by combining cryoelectron tomography (cryo-ET) and subtomogram analysis with a genetic approach. We reveal striking differences between sheathed and unsheathed flagella in V. alginolyticus cells, including a novel ring-like structure at the bottom of the hook that is associated with major remodeling of the outer membrane and sheath formation. Using mutants defective in flagellar motor components, we defined a Vibrio-specific feature (also known as the T ring) as a distinctive periplasmic structure with 13-fold symmetry. The unique architecture of the T ring provides a static platform to recruit the PomA/B complexes, which are required to generate higher torques for rotation of the sheathed flagellum and fast motility of Vibrio cells. Furthermore, the Vibrio flagellar motor exhibits an intrinsic length variation between the inner and the outer membrane bound complexes, suggesting the outer membrane bound complex can shift slightly along the axial rod during flagellar rotation. Together, our detailed analyses of the polar flagella in intact cells provide insights into unique aspects of the sheathed flagellum and the distinct motility of Vibrio species.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Flagelos/metabolismo , Flagelos/ultraestructura , Sodio/metabolismo , Vibrio alginolyticus/ultraestructura , Proteínas Bacterianas/metabolismo , Vibrio alginolyticus/citología , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
19.
J Bacteriol ; 200(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30104237

RESUMEN

The bacterial flagellum has evolved as one of the most remarkable nanomachines in nature. It provides swimming and swarming motilities that are often essential for the bacterial life cycle and pathogenesis. Many bacteria such as Salmonella and Vibrio species use flagella as an external propeller to move to favorable environments, whereas spirochetes utilize internal periplasmic flagella to drive a serpentine movement of the cell bodies through tissues. Here, we use cryo-electron tomography to visualize the polar sheathed flagellum of Vibrio alginolyticus with particular focus on a Vibrio-specific feature, the H-ring. We characterized the H-ring by identifying its two components FlgT and FlgO. We found that the majority of flagella are located within the periplasmic space in the absence of the H-ring, which are different from those of external flagella in wild-type cells. Our results not only indicate the H-ring has a novel function in facilitating the penetration of the outer membrane and the assembly of the external sheathed flagella but also are consistent with the notion that the flagella have evolved to adapt highly diverse needs by receiving or removing accessary genes.IMPORTANCE Flagellum is the major organelle for motility in many bacterial species. While most bacteria possess external flagella, such as the multiple peritrichous flagella found in Escherichia coli and Salmonella enterica or the single polar sheathed flagellum in Vibrio spp., spirochetes uniquely assemble periplasmic flagella, which are embedded between their inner and outer membranes. Here, we show for the first time that the external flagella in Vibrio alginolyticus can be changed as periplasmic flagella by deleting two flagellar genes. The discovery here may provide new insights into the molecular basis underlying assembly, diversity, and evolution of flagella.


Asunto(s)
Proteínas Bacterianas/genética , Flagelos/ultraestructura , Vibrio alginolyticus/genética , Microscopía por Crioelectrón , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Periplasma/metabolismo
20.
Genes Cells ; 22(7): 619-627, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28544270

RESUMEN

Many swimming bacteria use flagella as locomotive organelles. The spatial and numerical regulation of flagellar biosynthesis differs by bacterial species. The marine bacteria Vibrio alginolyticus use a single polar flagellum whose number is regulated positively by FlhF and negatively by FlhG. Cells lacking FlhF and FlhG have no flagellum. The motility defect in an flhFG deletion was suppressed by a mutation in the sflA gene that resulted in the production of multiple, peritrichous flagella. SflA is a Vibrio-specific protein. SlfA either facilitates flagellum growth at the cell pole or prevents flagellar formation on the cell body by an unknown mechanism. Fluorescent protein fusions to SflA localized to the cell pole in the presence of FlhF and FlhG, but exhibited both polar and lateral cell localization in ΔflhFG cells. Polar localization of SflA required the polar landmark protein HubP. Over-expression of the C-terminal region of SflA (SflAC ) in ΔflhFG ΔsflA cells suppressed the lateral flagellar formation. Our results suggest that SflA localizes with the flagella and that SflAC represses the flagellar initiation in ΔflhFG strains. A model is presented where SflA inhibits lateral flagellar formation to facilitate single polar flagellum assembly in V. alginolyticus cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Vibrio alginolyticus/citología , Vibrio alginolyticus/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Polaridad Celular , Regulación Bacteriana de la Expresión Génica , Mutación , Dominios Proteicos , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA