Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(5): 2513-2518, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964830

RESUMEN

During natural fertilization, mammalian spermatozoa must pass through the zona pellucida before reaching the plasma membrane of the oocyte. It is assumed that this step involves partial lysis of the zona by sperm acrosomal enzymes, but there has been no unequivocal evidence to support this view. Here we present evidence that acrosin, an acrosomal serine protease, plays an essential role in sperm penetration of the zona. We generated acrosin-knockout (KO) hamsters, using an in vivo transfection CRISPR/Cas9 system. Homozygous mutant males were completely sterile. Acrosin-KO spermatozoa ascended the female genital tract and reached ovulated oocytes in the oviduct ampulla, but never fertilized them. In vitro fertilization (IVF) experiments revealed that mutant spermatozoa attached to the zona, but failed to penetrate it. When the zona pellucida was removed before IVF, all oocytes were fertilized. This indicates that in hamsters, acrosin plays an indispensable role in allowing fertilizing spermatozoa to penetrate the zona. This study also suggests that the KO hamster system would be a useful model for identifying new gene functions or analyzing human and animal disorders because of its technical facility and reproducibility.


Asunto(s)
Acrosina/metabolismo , Cricetinae/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/enzimología , Acrosina/genética , Acrosoma/metabolismo , Animales , Cricetinae/genética , Femenino , Fertilización In Vitro , Técnicas de Inactivación de Genes , Masculino , Espermatozoides/fisiología , Zona Pelúcida/metabolismo
2.
Bioessays ; 40(6): e1700152, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29633293

RESUMEN

The endangered species Tokudaia osimensis has the unique chromosome constitution of 2n = 25, with an XO/XO sex chromosome configuration (2n = 25; XO). There is urgency to preserve this species and to elucidate the regulator(s) that can discriminate the males and females arising from the indistinguishable sex chromosome constitution. However, it is not realistic to examine this rare animal species by sacrificing individuals. Recently, true naïve induced pluripotent stem cells were successfully generated from a female T. osimensis, and the sexual plasticity of its germ cells was elucidated. This achievement constitutes the basis of an attractive research area, including embryonic fate determination, sex determination, and factor(s) that can replace the Y chromosome. In this essay, concrete strategies to conserve rare animal species and to reveal their specific characteristics using other compatible and abundant animals are proposed.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Mamíferos/fisiología , Procesos de Determinación del Sexo/fisiología , Animales , Femenino , Humanos , Masculino
3.
J Biol Chem ; 292(42): 17250-17257, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28882891

RESUMEN

Upon stimulation of toll-like receptors with various microbial ligands, induction of a variety of inflammatory genes is elicited by activation of a myeloid differentiation primary-response protein 88 (MyD88)-dependent signaling pathway. Interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK1) plays an essential role in this pathway by activating nuclear factor κB (NF-κB) and mitogen-activated kinases (MAPKs). Here, we identified optineurin (OPTN) as an IRAK1-binding protein by yeast two-hybrid screening using IRAK1 as bait. A C-terminal fragment of OPTN harboring a ubiquitin-binding domain was co-immunoprecipitated with IRAK1. In reporter analyses, overexpression of OPTN inhibited IL-1ß-, IRAK1-, and LPS-induced NF-κB activation. Consistently, OPTN deficiency resulted in increased NF-κB activation in response to IL-1ß/LPS stimulation. To address the mechanisms underlying the inhibitory effect of OPTN on NF-κB signaling, we focused on tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), which is an adaptor protein of IRAK1 and upon polyubiquitination plays a crucial role during NF-κB activation. Overexpression of OPTN prevented TRAF6 polyubiquitination. Furthermore, OPTN H486R mutant, which is unable to recruit the deubiquitinase CYLD, failed to inhibit IRAK1-induced NF-κB activation. These results suggest that the IRAK1-binding protein OPTN negatively regulates IL-1ß/LPS-induced NF-κB activation by preventing polyubiquitination of TRAF6.


Asunto(s)
Proteínas del Ojo/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción TFIIIA/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas de Ciclo Celular , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Enzima Desubiquitinante CYLD , Proteínas del Ojo/genética , Células HEK293 , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Proteínas de Transporte de Membrana , Ratones , Mutación Missense , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción TFIIIA/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinación/fisiología
4.
J Cell Biochem ; 118(3): 537-553, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27608441

RESUMEN

In this study, we created porcine-induced pluripotent stem (iPS) cells with the expression of six reprogramming factors (Oct3/4, Klf4, Sox2, c-Myc, Lin28, and Nanog). The resulting cells showed growth dependent on LIF (leukemia inhibitory factor) and expression of multiple stem cell markers. Furthermore, the iPS cells caused teratoma formation with three layers of differentiation and had both active X chromosomes (XaXa). Our iPS cells satisfied the both of important characteristics of stem cells: teratoma formation and activation of both X chromosomes. Injection of these iPS cells into morula stage embryos showed that these cells participate in the early stage of porcine embryogenesis. Furthermore, the RNA-Seq analysis detected that expression levels of endogenous pluripotent related genes, NANOG, SOX2, ZFP42, OCT3/4, ESRRB, and ERAS were much higher in iPS with six factors than that with four reprogramming factors. We can conclude that the expression of six reprogramming factors enables the creation of porcine iPS cells, which is partially close to naive iPS state. J. Cell. Biochem. 118: 537-553, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Técnicas de Reprogramación Celular , Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/biosíntesis , Cromosoma X/metabolismo , Animales , Femenino , Porcinos
5.
J Reprod Dev ; 63(5): 435-438, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28579598

RESUMEN

Although the laboratory rabbit has long contributed to many paradigmatic studies in biology and medicine, it is often considered to be a "classical animal model" because in the last 30 years, the laboratory mouse has been more often used, thanks to the availability of embryonic stem cells that have allowed the generation of gene knockout (KO) animals. However, recent genome-editing strategies have changed this unrivaled condition; so far, more than 10 mammalian species have been added to the list of KO animals. Among them, the rabbit has distinct advantages for application of genome-editing systems, such as easy application of superovulation, consistency with fertile natural mating, well-optimized embryo manipulation techniques, and the short gestation period. The rabbit has now returned to the stage of advanced biomedical research.


Asunto(s)
Animales Modificados Genéticamente , Edición Génica/métodos , Conejos , Animales , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Marcación de Gen/métodos , Humanos , Ratones , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética , Nucleasas con Dedos de Zinc/metabolismo
6.
Biol Reprod ; 94(6): 122, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27122635

RESUMEN

Mouse trophoblast stem cells (TSCs) proliferate indefinitely in vitro, despite their highly heterogeneous nature. In this study, we sought to characterize TSC colony types by using methods based on cell biology and biochemistry for a better understanding of how TSCs are maintained over multiple passages. Colonies of TSCs could be classified into four major types: type 1 is compact and dome-shaped, type 4 is flattened but with a large multilayered cell cluster, and types 2 and 3 are their intermediates. A time-lapse analysis indicated that type 1 colonies predominantly appeared after passaging, and a single type 1 colony gave rise to all other types. These colony transitions were irreversible, but at least some type 1 colonies persisted throughout culture. The typical cells comprising type 1 colonies were small and highly motile, and they aggregated together to form primary colonies. A hierarchical clustering based on global gene expression profiles suggested that a TSC line containing more type 1 colony cells was similar to in vivo extraembryonic tissues. Among the known TSC genes examined, Elf5 showed a differential expression pattern according to colony type, indicating that this gene might be a reliable marker of undifferentiated TSCs. When aggregated with fertilized embryos, cells from types 1 and 2, but not from type 4, distributed to the polar trophectoderm in blastocysts. These findings indicate that cells typically found in type 1 colonies can persist indefinitely as stem cells and are responsible for the maintenance of TSC lines. They may provide key information for future improvements in the quality of TSC lines.


Asunto(s)
Células Madre/citología , Trofoblastos/citología , Animales , Diferenciación Celular , Línea Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Trofoblastos/metabolismo
7.
J Reprod Dev ; 61(1): 13-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25345855

RESUMEN

Quality evaluation of pluripotent stem cells using appropriate animal models needs to be improved for human regenerative medicine. Previously, we demonstrated that although the in vitro neural differentiating capacity of rabbit induced pluripotent stem cells (iPSCs) can be mitigated by improving their baseline level of pluripotency, i.e., by converting them into the so-called "naïve-like" state, the effect after such conversion of rabbit embryonic stem cells (ESCs) remains to be elucidated. Here we found that naïve-like conversion enhanced the differences in innate in vitro differentiation capacity between ESCs and iPSCs. Naïve-like rabbit ESCs exhibited several features indicating pluripotency, including the capacity for teratoma formation. They differentiated into mature oligodendrocytes much more effectively (3.3-7.2 times) than naïve-like iPSCs. This suggests an inherent variation in differentiation potential in vitro among PSC lines. When naïve-like ESCs were injected into preimplantation rabbit embryos, although they contributed efficiently to forming the inner cell mass of blastocysts, no chimeric pups were obtained. Thus, in vitro neural differentiation following naïve-like conversion is a promising option for determining the quality of PSCs without the need to demonstrate chimeric contribution. These results provide an opportunity to evaluate which pluripotent stem cells or treatments are best suited for therapeutic use.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular , Técnicas Citológicas , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Ratones , Ratones SCID , Neuronas/patología , Oligodendroglía/citología , Reacción en Cadena de la Polimerasa , Conejos , Teratoma/metabolismo
8.
J Biol Chem ; 288(36): 26157-26166, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23880763

RESUMEN

Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called "naive" state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Conejos
9.
Sci Rep ; 14(1): 17450, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134590

RESUMEN

Because of the advent of genome-editing technology, gene knockout (KO) hamsters have become attractive research models for diverse diseases in humans. This study established a new KO model of diabetes by disrupting the insulin receptor substrate-2 (Irs2) gene in the golden (Syrian) hamster. Homozygous KO animals were born alive but with delayed postnatal growth until adulthood. They showed hyperglycemia, high HbA1c, and impaired glucose tolerance. However, they normally responded to insulin stimulation, unlike Irs2 KO mice, an obese type 2 diabetes (T2D) model. Consistent with this, Irs2 KO hamsters did not increase serum insulin levels upon glucose administration and showed ß-cell hypoplasia in their pancreas. Thus, our Irs2 KO hamster provide a unique T2D animal model that is distinct from the obese T2D models. This model may contribute to a better understanding of the pathophysiology of human non-obese T2D with ß-cell dysfunction, the most common type of T2D in East Asian countries, including Japan.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Sustrato del Receptor de Insulina , Mesocricetus , Animales , Cricetinae , Humanos , Masculino , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología
10.
Methods Mol Biol ; 2637: 255-267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773153

RESUMEN

The development of genome editing technology has allowed gene disruptions to be achieved in various animal species and has been beneficial to many mammals. Gene disruption using pluripotent stem cells is difficult to achieve in rabbits, but thanks to advances in genome editing technology, a number of gene disruptions have been conducted. This chapter describes a simple and easy method for carrying out gene disruptions in rabbits using CRISPR/Cas9 in which the gene to be disrupted is marked, the presence or absence of off-target candidates is checked, and a plasmid allowing simultaneous expression of Cas9 and sgRNA is constructed. Next, the cleaving activity of candidate sequences is investigated, and assessments are carried out to determine whether the target sequences can be cut. Female rabbits subjected to superovulation treatment are mated with male rabbits and fertilized eggs are collected, and then pronuclear injection of plasmid DNA is performed. The next day, the two-cell stage embryos are transplanted into a pseudopregnant rabbits, and offspring are born within approximately 29-30 days. The genomic DNA of the offspring is then examined to check what type of genetic modifications has occurred. With the advent of CRISPR/Cas9, the accessibility of gene disruptions in rabbits has improved remarkably. This chapter summarizes specifically how to carry out gene disruptions in rabbits.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Masculino , Animales , Conejos , Femenino , Microinyecciones , Plásmidos/genética , Marcación de Gen/métodos , ADN , Mamíferos/genética
11.
Methods Mol Biol ; 2637: 233-246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773151

RESUMEN

The development of ZFN, TALEN, and CRISPR/Cas9 systems has simplified the process of generating knockout (KO) and knock-in (KI) rats in addition to mice. However, in rats, an efficient genome editing technique that uses in vitro fertilized oocytes has not been established. Recently, we reported the stable generation of offspring from five standard strains of rats by superovulation and in vitro fertilization (IVF). Furthermore, genome-edited rats can be easily generated by electroporation. First, juvenile female rats are administered LHRH (luteinizing hormone-releasing hormone) to synchronize the estrous cycle and then AIS (Automatic Identification System) with PMSG (pregnant mare serum gonadotropin) before hCG (human chorionic gonadotropin) for superovulation. Sperm collected from a sexually mature male rat the following morning is then pre-cultured. Cumulus cell-oocyte complexes (COCs) are collected from female rats under anesthesia, and COCs are induced into a medium containing concentration-adjusted sperm. Thereafter, oocytes with two pronucleus are selected as fertilized oocytes. Next, fertilized oocytes are transferred into a glass chamber containing CRISPR ribonucleoprotein (RNP) complexes formed from gRNA and Cas9 protein. After electroporation, fertilized oocytes are then immediately transferred to culture medium. The next day, embryos are transferred into the oviduct of pseudopregnant female rats. Using the above method, offspring can be obtained 22 days after the day of embryo transfer. In this paper, we outline a method allowing simple and efficient generation of genetically modified rats without the need for technically difficult micromanipulation techniques.


Asunto(s)
Oocitos , Semen , Animales , Femenino , Humanos , Masculino , Embarazo , Ratas , Transferencia de Embrión , Fertilización In Vitro/métodos , Edición Génica/métodos , Caballos
12.
Int J Emerg Med ; 16(1): 80, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37926823

RESUMEN

BACKGROUND: Big cat bites are highly lethal due to the enormous bite force of these animals. This article reviews the morphology of these types of injuries and key points of management through a survival case at a Japanese safari park. CASE PRESENTATION: We report the case of a 26-year-old female keeper who was attacked by a tiger. She was quickly transported to our university hospital by ambulance helicopter. The keeper was severely bitten on the head and face and had wounds all over her body. Craniofacial repair was performed by emergency surgery. She suffered mild facial nerve paralysis and trismus because of being bitten by the tiger and is currently recovering. CONCLUSIONS: A multidisciplinary approach of the severe tiger bites successfully treated a young woman cosmetically and mentally. Animal farms and zoos that keep tigers should take strict measures to avoid direct confrontation with tigers.

13.
Sci Rep ; 12(1): 21985, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539541

RESUMEN

The use of mice as experimental animal models has been a practice since the development of genetically engineered mouse models (GEMMs) in the early 1980s. New technologies, including genome editing, have helped in the time- and cost-efficient generation of GEMMs. However, methods for preparing pseudopregnant females, essential for the generation of GEMMs, remain less advanced. This study proposes a new method to achieve simple production of pseudopregnant female mice using a luteinizing hormone-releasing hormone agonist (LHRHa). A 20 µg LHRHa/mouse was identified as the best dose for inducing estrus synchronization. However, the frequency of copulation was 40% on a single injection. With sequential injections of 20 µg LHRHa/mouse on Days-1 and -2, followed by pairing on Day-5, 74% of LHRHa-treated females copulated with male mice. Moreover, LHRHa treatment did not affect fetal and postnatal development. Eventually, successful generation of offspring via embryo transfer was attained using LHRHa-treated pseudopregnant females. LHRHa administration method is efficient in producing pseudopregnant female mice for the generation of GEMMs, and we expect that it will contribute towards advancing the clinical research.


Asunto(s)
Transferencia de Embrión , Sincronización del Estro , Humanos , Embarazo , Masculino , Femenino , Ratones , Animales , Atención Prenatal , Hormona Liberadora de Gonadotropina
14.
J Biol Chem ; 285(41): 31362-9, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20670936

RESUMEN

Human induced pluripotent stem (iPS) cells have the potential to establish a new field of promising regenerative medicine. Therefore, the safety and the efficiency of iPS-derived cells must be tested rigorously using appropriate animal models before human trials can commence. Here, we report the establishment of rabbit iPS cells as the first human-type iPS cells generated from a small laboratory animal species. Using lentiviral vectors, four human reprogramming genes (c-MYC, KLF4, SOX2, and OCT3/4) were introduced successfully into adult rabbit liver and stomach cells. The resulting rabbit iPS cells closely resembled human iPS cells; they formed flattened colonies with sharp edges and proliferated indefinitely in the presence of basic FGF. They expressed the endogenous pluripotency markers c-MYC, KLF4, SOX2, OCT3/4, and NANOG, whereas the introduced human genes were completely silenced. Using in vitro differentiating conditions, rabbit iPS cells readily differentiated into ectoderm, mesoderm, and endoderm. They also formed teratomas containing a variety of tissues of all three germ layers in immunodeficient mice. Thus, the rabbit iPS cells fulfilled all of the requirements for the acquisition of the fully reprogrammed state, showing high similarity to their embryonic stem cell counterparts we generated recently. However, their global gene expression analysis revealed a slight but rigid difference between these two types of rabbit pluripotent stem cells. The rabbit model should enable us to compare iPS cells and embryonic stem cells under the same standardized conditions in evaluating their ultimate feasibility for pluripotent cell-based regenerative medicine in humans.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Desdiferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/biosíntesis , Animales , Línea Celular , Vectores Genéticos , Humanos , Factor 4 Similar a Kruppel , Lentivirus , Ratones , Conejos , Factores de Transcripción/genética , Transducción Genética
15.
Biosci Biotechnol Biochem ; 75(2): 299-304, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21307593

RESUMEN

Chitinase I (CHI1) of Bacillus circulans KA-304 forms protoplasts from Schizophyllum commune mycelia when the enzyme is combined with α-1,3-glucanase of B. circulans KA-304. CHI1 consists of an N-terminal unknown region and a C-terminal catalytic region classified into the glycoside hydrolase family-19 type. An N-terminal region-truncated mutant of CHI 1 (CatCHI1), which was expressed in Escherichia coli Rosetta-gami B (DE3), lost colloidal chitin- and powder chitin-binding activities. The colloidal chitin- and the powder chitin-hydrolyzing activities of CatCHI1 were lower than those of CHI1, and CatCHI1 was not effective in forming the protoplast. A fusion protein of the N-terminal region of CHI1 and green fluorescent protein (Nterm-GFP) was expressed in E. coli, and the fusion protein was adsorbed to colloidal chitin, powder chitin, and chitosan. Fluorescence microscopy analysis showed that Nterm-GFP bound to the S. commune cell-wall.


Asunto(s)
Bacillus/enzimología , Quitina/metabolismo , Quitinasas/química , Quitinasas/metabolismo , Quitinasas/genética , Hidrólisis , Estructura Terciaria de Proteína , Protoplastos/metabolismo , Schizophyllum/citología , Eliminación de Secuencia
16.
Exp Cell Res ; 315(12): 2033-42, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19331817

RESUMEN

Recently, we proposed that rabbit embryonic stem (ES) cells can be stable mammalian ES cells and can be a small animal model for human ES cell research. However, the signaling pathways controlling rabbit ES cell pluripotency remain largely unknown. Here we report that bFGF can maintain the undifferentiated status of rabbit ES cells and found that Activin/Nodal signaling through Smad2/3 activation is necessary to maintain the pluripotent status of rabbit ES cells. We further show that in spite of STAT3 in rabbit ES cells, LIF is dispensable for maintenance of undifferentiated status in rabbit ES cells. Although phosphorylation of Janus Kinase signal transducer and activator (JAK/STAT) disappeared after JAK-inhibitor treatment, OCT4 is constantly produced. When rabbit ES cells were cultured for more than 40 passages in the absence of LIF, expression of stem cell markers and teratoma formation were observed. Additionally, treatment with Rho-associated kinase (ROCK) inhibitor, Y27632, to rabbit ES cells significantly enhanced cell growth. These findings suggest that molecular mechanisms underlying rabbit ES cell self-renewal and pluripotency are similar to primate ES cells. Rabbit ES cells may provide a translational research model for the study of human diseases in vitro and applications to transplantation therapy.


Asunto(s)
Activinas/fisiología , Células Madre Embrionarias/fisiología , Factor 2 de Crecimiento de Fibroblastos/fisiología , Factor Inhibidor de Leucemia/fisiología , Proteína Nodal/fisiología , Amidas/farmacología , Animales , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Ratones , Ratones SCID , Trasplante de Neoplasias , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Piridinas/farmacología , Conejos , Transducción de Señal , Teratoma/patología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
17.
Sci Rep ; 10(1): 1830, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31996772

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Nat Commun ; 11(1): 2150, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358519

RESUMEN

Somatic cell nuclear transfer (SCNT) in mammals is an inefficient process that is frequently associated with abnormal phenotypes, especially in placentas. Recent studies demonstrated that mouse SCNT placentas completely lack histone methylation (H3K27me3)-dependent imprinting, but how it affects placental development remains unclear. Here, we provide evidence that the loss of H3K27me3 imprinting is responsible for abnormal placental enlargement and low birth rates following SCNT, through upregulation of imprinted miRNAs. When we restore the normal paternal expression of H3K27me3-dependent imprinted genes (Sfmbt2, Gab1, and Slc38a4) in SCNT placentas by maternal knockout, the placentas remain enlarged. Intriguingly, correcting the expression of clustered miRNAs within the Sfmbt2 gene ameliorates the placental phenotype. Importantly, their target genes, which are confirmed to cause SCNT-like placental histology, recover their expression level. The birth rates increase about twofold. Thus, we identify loss of H3K27me3 imprinting as an epigenetic error that compromises embryo development following SCNT.


Asunto(s)
Histonas/metabolismo , MicroARNs/genética , Placenta/metabolismo , Proteínas Represoras/genética , Animales , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Femenino , Impresión Genómica , Ratones , Familia de Multigenes/genética , Embarazo , ARN no Traducido/genética , ARN no Traducido/metabolismo
19.
Genesis ; 47(3): 155-60, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19241381

RESUMEN

Mammalian androgenetic embryos can be produced by pronuclear exchange of fertilized oocytes or by dispermic in vitro fertilization of enucleated oocytes. Here, we report a new technique for producing mouse androgenetic embryos by injection of two round spermatid nuclei into oocytes, followed by female chromosome removal. We found that injection of round spermatids resulted in high rates of oocyte survival (88%). Androgenetic embryos thus produced developed into mid-gestation fetuses at various rates, depending on the mouse strain used. All the fetuses examined maintained paternally specific genomic imprinting memories. This technique also enabled us to produce complete heterozygous F1 embryos by injecting two spermatids from different strains. The best rate of fetal survival (12% per embryos transferred) was obtained with C57BL/6 x DBA/2 androgenetic embryos. We also generated embryonic stem cell lines efficiently with the genotype of Mus musculus domesticus x M. m. molossinus. Thus, injection of two round spermatid nuclei followed by maternal enucleation is an effective alternative method of producing androgenetic embryos that consistently develop into blastocysts and mid-gestation fetuses.


Asunto(s)
Núcleo Celular , Embrión de Mamíferos , Técnicas de Transferencia Nuclear , Oocitos , Espermátides , Animales , Femenino , Masculino , Ratones
20.
Genes Cells ; 13(10): 1001-13, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18754795

RESUMEN

Although the acrosome reaction and subsequent penetration of sperm through the egg zona pellucida (ZP) are essential for mammalian fertilization, the molecular mechanism is still controversial. We have previously identified serine protease Tesp5 identical to Prss21 on the mouse sperm surface as a candidate enzyme involved in sperm penetration through the ZP. Here we show that despite normal fertility of male mice lacking Prss21/Tesp5, the epididymal sperm penetrates the ZP only at a very low rate in vitro, presumably owing to the reduced ability to bind the ZP and undergo the ZP-induced acrosome reaction. The ability of Prss21-null sperm to fuse with the egg in vitro was also impaired severely. Intriguingly, the reduced fertility of Prss21-null epididymal sperm was rescued by exposure of the sperm to the uterine microenvironment and by in vitro treatment of the sperm with uterine fluids. These data suggest the physiological importance of sperm transport through the uterus.


Asunto(s)
Epidídimo/metabolismo , Fertilización/fisiología , Eliminación de Gen , Serina Endopeptidasas , Espermatozoides , Útero/fisiología , Reacción Acrosómica , Animales , Femenino , Proteínas Ligadas a GPI , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/metabolismo , Espermatozoides/fisiología , Útero/metabolismo , Zona Pelúcida/metabolismo , Zona Pelúcida/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA