Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Hum Brain Mapp ; 43(8): 2444-2459, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233859

RESUMEN

Cluster-wise inference is widely used in fMRI analysis. The cluster-level statistic is often obtained by counting the number of intra-cluster voxels which surpass a voxel-level statistical significance threshold. This measure can be sub-optimal regarding the power and false-positive error rate because the suprathreshold voxel count neglects the voxel-wise significance levels and ignores the dependence between voxels. This article aims to provide a new Integrated Cluster-wise significance Measure (ICM) for cluster-level significance determination in cluster-wise fMRI analysis by integrating cluster extent, voxel-level significance (e.g., p values), and activation dependence between within-cluster voxels. We develop a computationally efficient strategy for ICM based on probabilistic approximation theories. Consequently, the computational load for ICM-based cluster-wise inference (e.g., permutation tests) is affordable. We validate the proposed method via extensive simulations and then apply it to two fMRI data sets. The results demonstrate that ICM can improve the power with well-controlled family-wise error (FWE).


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Análisis por Conglomerados , Humanos , Imagen por Resonancia Magnética/métodos
2.
Brain Sci ; 11(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34827371

RESUMEN

Deficits in neuronal structure are consistently associated with neurodevelopmental illnesses such as autism and schizophrenia. Nonetheless, the inability to access neurons from clinical patients has limited the study of early neurostructural changes directly in patients' cells. This obstacle has been circumvented by differentiating stem cells into neurons, although the most used methodologies are time consuming. Therefore, we recently developed a relatively rapid (~20 days) protocol for transdifferentiating human circulating monocytes into neuronal-like cells. These monocyte-derived-neuronal-like cells (MDNCs) express several genes and proteins considered neuronal markers, such as MAP-2 and PSD-95. In addition, these cells conduct electrical activity. We have also previously shown that the structure of MDNCs is comparable with that of human developing neurons (HDNs) after 5 days in culture. Moreover, the neurostructure of MDNCs responds similarly to that of HDNs when exposed to colchicine and dopamine. In this manuscript, we expanded our characterization of MDNCs to include the expression of 12 neuronal genes, including tau. Following, we compared three different tracing approaches (two semi-automated and one automated) that enable tracing using photographs of live cells. This comparison is imperative for determining which neurite tracing method is more efficient in extracting neurostructural data from MDNCs and thus allowing researchers to take advantage of the faster yield provided by these neuronal-like cells. Surprisingly, it was one of the semi-automated methods that was the fastest, consisting of tracing only the longest primary and the longest secondary neurite. This tracing technique also detected more structural deficits. The only automated method tested, Volocity, detected MDNCs but failed to trace the entire neuritic length. Other advantages and disadvantages of the three tracing approaches are also presented and discussed.

3.
NPJ Schizophr ; 6(1): 34, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219208

RESUMEN

Plasma 24S-hydroxycholesterol mostly originates in brain tissue and likely reflects the turnover of cholesterol in the central nervous system. As cholesterol is disproportionally enriched in many key brain structures, 24S-hydroxycholesterol is a promising biomarker for psychiatric and neurologic disorders that impact brain structure. We hypothesized that, as schizophrenia patients have widely reported gray and white matter deficits, they would have abnormal levels of plasma 24S-hydroxycholesterol, and that plasma levels of 24S-hydroxycholesterol would be associated with brain structural and functional biomarkers for schizophrenia. Plasma levels of 24S-hydroxycholesterol were measured in 226 individuals with schizophrenia and 204 healthy controls. The results showed that levels of 24S-hydroxycholesterol were not significantly different between patients and controls. Age was significantly and negatively correlated with 24S-hydroxycholesterol in both groups, and in both groups, females had significantly higher levels of 24S-hydroxycholesterol compared to males. Levels of 24S-hydroxycholesterol were not related to average fractional anisotropy of white matter or cortical thickness, or to cognitive deficits in schizophrenia. Based on these results from a large sample and using multiple brain biomarkers, we conclude there is little to no value of plasma 24S-hydroxycholesterol as a brain metabolite biomarker for schizophrenia.

4.
Schizophr Bull ; 44(4): 886-895, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29036718

RESUMEN

Regulation of stress response involves top-down mechanisms of the frontal-limbic glutamatergic system. As schizophrenia is associated with glutamatergic abnormalities, we hypothesized that schizophrenia patients may have abnormal glutamatergic reactivity within the dorsal anterior cingulate cortex (dACC), a key region involved in perception of and reaction to stress. To test this, we developed a somatic stress paradigm involving pseudorandom application of safe but painfully hot stimuli to the forearm of participants while they were undergoing serial proton magnetic resonance spectroscopy to measure changes in glutamate and glutamine levels in the dACC. This paradigm was tested in a sample of 21 healthy controls and 23 patients with schizophrenia. Across groups, glutamate levels significantly decreased following exposure to thermal pain, while ratio of glutamine to glutamate significantly increased. However, schizophrenia patients exhibited an initial increase in glutamate levels during challenge that was significantly different from controls, after controlling for heat pain tolerance. Furthermore, in patients, the acute glutamate response was positively correlated with childhood trauma (r = .41, P = .050) and inversely correlated with working memory (r = -.49, P = .023). These results provide preliminary evidence for abnormal glutamatergic response to stress in schizophrenia patients, which may point toward novel approaches to understanding how stress contributes to the illness.


Asunto(s)
Ácido Glutámico/metabolismo , Glutamina/metabolismo , Giro del Cíngulo , Dolor Nociceptivo , Esquizofrenia , Estrés Fisiológico/fisiología , Adulto , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Calor , Humanos , Masculino , Persona de Mediana Edad , Dolor Nociceptivo/diagnóstico por imagen , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/fisiopatología , Espectroscopía de Protones por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA