Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
AJR Am J Roentgenol ; 222(2): e2329938, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37910039

RESUMEN

BACKGROUND. Changes in lung parenchyma elasticity in usual interstitial pneumonia (UIP) may increase the risk for complications after percutaneous transthoracic needle biopsy (PTNB) of the lung. OBJECTIVE. The purpose of this article was to investigate the association of UIP findings on CT with complications after PTNB, including pneumothorax, pneumothorax requiring chest tube insertion, and hemoptysis. METHODS. This retrospective single-center study included 4187 patients (mean age, 63.8 ± 11.9 [SD] years; 2513 men, 1674 women) who underwent PTNB between January 2010 and December 2015. Patients were categorized into a UIP group and non-UIP group by review of preprocedural CT. In the UIP group, procedural CT images were reviewed to assess for traversal of UIP findings by needle. Multivariable logistic regression analyses were performed to identify associations between the UIP group and needle traversal with postbiopsy complications, controlling for a range of patient, lesion, and procedural characteristics. RESULTS. The UIP and non-UIP groups included 148 and 4039 patients, respectively; in the UIP group, traversal of UIP findings by needle was observed in 53 patients and not observed in 95 patients. The UIP group, in comparison with the non-UIP group, had a higher frequency of pneumothorax (35.1% vs 17.9%, p < .001) and pneumothorax requiring chest tube placement (6.1% vs 1.5%, p = .001) and lower frequency of hemoptysis (2.0% vs 6.1%, p = .03). In multivariable analyses, the UIP group with traversal of UIP findings by needle, relative to the non-UIP group, showed independent associations with pneumothorax (OR, 5.25; 95% CI, 2.94-9.37; p < .001) and pneumothorax requiring chest tube placement (OR, 9.55; 95% CI, 3.74-24.38; p < .001). The UIP group without traversal of UIP findings by needle, relative to the non-UIP group, was not independently associated with pneumothorax (OR, 1.18; 95% CI, 0.71-1.97; p = .51) or pneumothorax requiring chest tube placement (OR, 1.08; 95% CI, 0.25-4.72; p = .92). The UIP group, with or without traversal of UIP findings by needle, was not independently associated with hemoptysis. No patient experienced air embolism or procedure-related death. CONCLUSION. Needle traversal of UIP findings is a risk factor for pneumothorax and pneumothorax requiring chest tube placement after PTNB. CLINICAL IMPACT. When performing PTNB in patients with UIP, radiologists should plan a needle trajectory that does not traverse UIP findings, when possible.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Neumotórax , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Neumotórax/etiología , Hemoptisis/etiología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Biopsia Guiada por Imagen/efectos adversos , Biopsia Guiada por Imagen/métodos , Radiografía Intervencional/métodos , Pulmón/diagnóstico por imagen , Pulmón/patología , Biopsia con Aguja/efectos adversos , Biopsia con Aguja/métodos , Neoplasias Pulmonares/patología , Fibrosis Pulmonar Idiopática/patología , Factores de Riesgo
2.
Radiology ; 303(2): 433-441, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35076301

RESUMEN

Background Accurate detection of pneumothorax on chest radiographs, the most common complication of percutaneous transthoracic needle biopsies (PTNBs), is not always easy in practice. A computer-aided detection (CAD) system may help detect pneumothorax. Purpose To investigate whether a deep learning-based CAD system can improve detection performance for pneumothorax on chest radiographs after PTNB in clinical practice. Materials and Methods A CAD system for post-PTNB pneumothorax detection on chest radiographs was implemented in an institution in February 2020. This retrospective cohort study consecutively included chest radiographs interpreted with CAD assistance (CAD-applied group; February 2020 to November 2020) and those interpreted before implementation (non-CAD group; January 2018 to January 2020). The reference standard was defined by consensus reading by two radiologists. The diagnostic accuracy for pneumothorax was compared between the two groups using generalized estimating equations. Matching was performed according to whether the radiograph reader and PTNB operator were the same using the greedy method. Results A total of 676 radiographs from 655 patients (mean age: 67 years ± 11; 390 men) in the CAD-applied group and 676 radiographs from 664 patients (mean age: 66 years ± 12; 400 men) in the non-CAD group were included. The incidence of pneumothorax was 18.2% (123 of 676 radiographs) in the CAD-applied group and 22.5% (152 of 676 radiographs) in the non-CAD group (P = .05). The CAD-applied group showed higher sensitivity (85.4% vs 67.1%), negative predictive value (96.8% vs 91.3%), and accuracy (96.8% vs 92.3%) than the non-CAD group (all P < .001). The sensitivity for a small amount of pneumothorax improved in the CAD-applied group (pneumothorax of <10%: 74.5% vs 51.4%, P = .009; pneumothorax of 10%-15%: 92.7% vs 70.2%, P = .008). Among patients with pneumothorax, 34 of 655 (5.0%) in the non-CAD group and 16 of 664 (2.4%) in the CAD-applied group (P = .009) required subsequent drainage catheter insertion. Conclusion A deep learning-based computer-aided detection system improved the detection performance for pneumothorax on chest radiographs after lung biopsy. © RSNA, 2022 See also the editorial by Schiebler and Hartung in this issue.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Neumotórax , Anciano , Biopsia con Aguja , Femenino , Humanos , Masculino , Neumotórax/diagnóstico por imagen , Neumotórax/etiología , Radiografía Torácica/métodos , Estudios Retrospectivos
3.
Eur Radiol ; 32(1): 213-222, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34264351

RESUMEN

OBJECTIVE: To explore the value of a deep learning-based algorithm in detecting Lung CT Screening Reporting and Data System category 4 nodules on chest radiographs from an asymptomatic health checkup population. METHODS: Data from an annual retrospective cohort of individuals who underwent chest radiographs for health checkup purposes and chest CT scanning within 3 months were collected. Among 3073 individuals, 118 with category 4 nodules on CT were selected. A reader performance test was performed using those 118 radiographs and randomly selected 51 individuals without any nodules. Four radiologists independently evaluated the radiographs without and with the results of the algorithm; and sensitivities/specificities were compared. The sample size needed to confirm the difference in detection rates was calculated, i.e., the number of true-positive radiographs divided by the total number of radiographs. RESULTS: The sensitivity of the radiologists substantially increased aided by the algorithm (38.8% [183/472] to 45.1% [213/472]; p < .001) without significant change in specificity (94.1% [192/204] vs. 92.2% [188/204]; p = .22). Pooled radiologists detected more nodules with the algorithm (32.0% [156/488] vs. 38.9% [190/488]; p < .001), without alteration of false-positive rates (0.09 [62/676], both). Pooled detection rates for the annual cohort were 1.49% (183/12,292) and 1.73% (213/12,292) without and with the algorithm, respectively. A sample size of 41,776 in each arm would be required to demonstrate significant detection rate difference with < 5% type I error and > 80% power. CONCLUSION: Although readers substantially increased sensitivity in detecting nodules on chest radiographs from a health checkup population aided by the algorithm, detection rate difference was only 0.24%, requiring a sample size >80,000 for a randomized controlled trial. KEY POINTS: • Aided by a deep learning algorithm, pooled radiologists improved their sensitivity in detecting Lung-RADS category 4 nodules on chest radiographs from a health checkup population (38.8% [183/472] to 45.1% [213/472]; p < .001), without increasing false-positive rate. • The prevalence of the Lung-RADS category 4 nodules was 3.8% (118/3073) on the population, resulting in only 0.24% increase of the detection rate for the radiologists with assistance of the algorithm. • To confirm the significant detection rate increase by a randomized controlled trial, a sample size of 84,000 would be required.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Algoritmos , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía Torácica , Estudios Retrospectivos , Tamaño de la Muestra , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X
4.
Eur Radiol ; 32(7): 4468-4478, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35195744

RESUMEN

OBJECTIVES: To investigate the efficacy of an artificial intelligence (AI) system for the identification of false negatives in chest radiographs that were interpreted as normal by radiologists. METHODS: We consecutively collected chest radiographs that were read as normal during 1 month (March 2020) in a single institution. A commercialized AI system was retrospectively applied to these radiographs. Radiographs with abnormal AI results were then re-interpreted by the radiologist who initially read the radiograph ("AI as the advisor" scenario). The reference standards for the true presence of relevant abnormalities in radiographs were defined by majority voting of three thoracic radiologists. The efficacy of the AI system was evaluated by detection yield (proportion of true-positive identification among the entire examination) and false-referral rate (FRR, proportion of false-positive identification among all examinations). Decision curve analyses were performed to evaluate the net benefits of applying the AI system. RESULTS: A total of 4208 radiographs from 3778 patients (M:F = 1542:2236; median age, 56 years) were included. The AI system identified initially overlooked relevant abnormalities with a detection yield and an FRR of 2.4% and 14.0%, respectively. In the "AI as the advisor" scenario, radiologists detected initially overlooked relevant abnormalities with a detection yield and FRR of 1.2% and 0.97%, respectively. In a decision curve analysis, AI as an advisor scenario exhibited a positive net benefit when the cost-to-benefit ratio was below 1:0.8. CONCLUSION: An AI system could identify relevant abnormalities overlooked by radiologists and could enable radiologists to correct their false-negative interpretations by providing feedback to radiologists. KEY POINTS: • In consecutive chest radiographs with normal interpretations, an artificial intelligence system could identify relevant abnormalities that were initially overlooked by radiologists. • The artificial intelligence system could enable radiologists to correct their initial false-negative interpretations by providing feedback to radiologists when overlooked abnormalities were present.


Asunto(s)
Inteligencia Artificial , Radiólogos , Humanos , Persona de Mediana Edad , Radiografía , Radiografía Torácica/métodos , Estudios Retrospectivos
5.
Eur Radiol ; 31(7): 5139-5147, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33415436

RESUMEN

OBJECTIVE: To compare the image quality between the vendor-agnostic and vendor-specific algorithms on ultralow-dose chest CT. METHODS: Vendor-agnostic deep learning post-processing model (DLM), vendor-specific deep learning image reconstruction (DLIR, high level), and adaptive statistical iterative reconstruction (ASiR, 70%) algorithms were employed. One hundred consecutive ultralow-dose noncontrast CT scans (CTDIvol; mean, 0.33 ± 0.056 mGy) were reconstructed with five algorithms: DLM-stnd (standard kernel), DLM-shrp (sharp kernel), DLIR, ASiR-stnd, and ASiR-shrp. Three thoracic radiologists blinded to the reconstruction algorithms reviewed five sets of 100 images and assessed subjective noise, spatial resolution, distortion artifact, and overall image quality. They selected the most preferred algorithm among five image sets for each case. Image noise and signal-to-noise ratio were measured. Edge-rise-distance was measured at a pulmonary vessel, i.e., the distance between two points where attenuation was 10% and 90% of maximal intravascular intensity. The skewness of attenuation was calculated in homogeneous areas. RESULTS: DLM-stnd, followed by DLIR, showed the best subjective noise on both lung and mediastinal windows, while DLIR yielded the least measured noise (ps < .0001). Compared to DLM-stnd, DLIR showed inferior subjective spatial resolution on lung window and higher edge-rise-distance (ps < .0001). Additionally, DLIR showed the most frequent distortion artifacts and deviated skewness (ps < .0001). DLM-stnd scored the best overall image quality, followed by DLM-shrp and DLIR (mean score 3.89 ± 0.19, 3.68 ± 0.24, and 3.53 ± 0.33; ps < .001). Two among three readers preferred DLM-stnd on both windows. CONCLUSION: Although DLIR provided the best quantitative noise profile, DLM-stnd showed the best overall image quality with fewer artifacts and was preferred by two among three readers. KEY POINTS: • A vendor-agnostic deep learning post-processing algorithm applied to ultralow-dose chest CT exhibited the best image quality compared to vendor-specific deep learning algorithm and ASiR techniques. • Two out of three readers preferred a vendor-agnostic deep learning post-processing algorithm in comparison to vendor-specific deep learning algorithm and ASiR techniques. • A vendor-specific deep learning reconstruction algorithm yielded the least image noise, but showed significantly more frequent specific distortion artifacts and increased skewness of attenuation compared to a vendor-agnostic algorithm.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Humanos , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Tórax , Tomografía Computarizada por Rayos X
6.
Eur Radiol ; 31(5): 2866-2876, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33125556

RESUMEN

OBJECTIVES: To develop and validate a preoperative CT-based deep learning model for the prediction of visceral pleural invasion (VPI) in early-stage lung cancer. METHODS: In this retrospective study, dataset 1 (for training, tuning, and internal validation) included 676 patients with clinical stage IA lung adenocarcinomas resected between 2009 and 2015. Dataset 2 (for temporal validation) included 141 patients with clinical stage I adenocarcinomas resected between 2017 and 2018. A CT-based deep learning model was developed for the prediction of VPI and validated in terms of discrimination and calibration. An observer performance study and a multivariable regression analysis were performed. RESULTS: The area under the receiver operating characteristic curve (AUC) of the model was 0.75 (95% CI, 0.67-0.84), which was comparable to those of board-certified radiologists (AUC, 0.73-0.79; all p > 0.05). The model had a higher standardized partial AUC for a specificity range of 90 to 100% than the radiologists (all p < 0.05). The high sensitivity cutoff (0.245) yielded a sensitivity of 93.8% and a specificity of 31.2%, and the high specificity cutoff (0.448) resulted in a sensitivity of 47.9% and a specificity of 86.0%. Two of the three radiologists provided highly sensitive (93.8% and 97.9%) but not specific (48.4% and 40.9%) diagnoses. The model showed good calibration (p > 0.05), and its output was an independent predictor for VPI (adjusted odds ratio, 1.07; 95% CI, 1.03-1.11; p < 0.001). CONCLUSIONS: The deep learning model demonstrated a radiologist-level performance. The model could achieve either highly sensitive or highly specific diagnoses depending on clinical needs. KEY POINTS: • The preoperative CT-based deep learning model demonstrated an expert-level diagnostic performance for the presence of visceral pleural invasion in early-stage lung cancer. • Radiologists had a tendency toward highly sensitive, but not specific diagnoses for the visceral pleural invasion.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Radiólogos , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X
8.
Br J Radiol ; 97(1155): 632-639, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38265235

RESUMEN

OBJECTIVES: To develop and validate a super-resolution (SR) algorithm generating clinically feasible chest radiographs from 64-fold reduced data. METHODS: An SR convolutional neural network was trained to produce original-resolution images (output) from 64-fold reduced images (input) using 128 × 128 patches (n = 127 030). For validation, 112 radiographs-including those with pneumothorax (n = 17), nodules (n = 20), consolidations (n = 18), and ground-glass opacity (GGO; n = 16)-were collected. Three image sets were prepared: the original images and those reconstructed using SR and conventional linear interpolation (LI) using 64-fold reduced data. The mean-squared error (MSE) was calculated to measure similarity between the reconstructed and original images, and image noise was quantified. Three thoracic radiologists evaluated the quality of each image and decided whether any abnormalities were present. RESULTS: The SR-images were more similar to the original images than the LI-reconstructed images (MSE: 9269 ± 1015 vs. 9429 ± 1057; P = .02). The SR-images showed lower measured noise and scored better noise level by three radiologists than both original and LI-reconstructed images (Ps < .01). The radiologists' pooled sensitivity with the SR-reconstructed images was not significantly different compared with the original images for detecting pneumothorax (SR vs. original, 90.2% [46/51] vs. 96.1% [49/51]; P = .19), nodule (90.0% [54/60] vs. 85.0% [51/60]; P = .26), consolidation (100% [54/54] vs. 96.3% [52/54]; P = .50), and GGO (91.7% [44/48] vs. 95.8% [46/48]; P = .69). CONCLUSIONS: SR-reconstructed chest radiographs using 64-fold reduced data showed a lower noise level than the original images, with equivalent sensitivity for detecting major abnormalities. ADVANCES IN KNOWLEDGE: This is the first study applying super-resolution in data reduction of chest radiographs.


Asunto(s)
Enfermedades Pulmonares , Neumotórax , Humanos , Neumotórax/diagnóstico por imagen , Redes Neurales de la Computación , Radiografía , Algoritmos
9.
Korean J Radiol ; 24(9): 890-902, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37634643

RESUMEN

OBJECTIVE: The clinical impact of artificial intelligence-based computer-aided detection (AI-CAD) beyond diagnostic accuracy remains uncertain. We aimed to investigate the influence of the clinical implementation of AI-CAD for chest radiograph (CR) interpretation in daily practice on the rate of referral for chest computed tomography (CT). MATERIALS AND METHODS: AI-CAD was implemented in clinical practice at the Seoul National University Hospital. CRs obtained from patients who visited the pulmonology outpatient clinics before (January-December 2019) and after (January-December 2020) implementation were included in this study. After implementation, the referring pulmonologist requested CRs with or without AI-CAD analysis. We conducted multivariable logistic regression analyses to evaluate the associations between using AI-CAD and the following study outcomes: the rate of chest CT referral, defined as request and actual acquisition of chest CT within 30 days after CR acquisition, and the CT referral rates separately for subsequent positive and negative CT results. Multivariable analyses included various covariates such as patient age and sex, time of CR acquisition (before versus after AI-CAD implementation), referring pulmonologist, nature of the CR examination (baseline versus follow-up examination), and radiology reports presence at the time of the pulmonology visit. RESULTS: A total of 28546 CRs from 14565 patients (mean age: 67 years; 7130 males) and 25888 CRs from 12929 patients (mean age: 67 years; 6435 males) before and after AI-CAD implementation were included. The use of AI-CAD was independently associated with increased chest CT referrals (odds ratio [OR], 1.33; P = 0.008) and referrals with subsequent negative chest CT results (OR, 1.46; P = 0.005). Meanwhile, referrals with positive chest CT results were not significantly associated with AI-CAD use (OR, 1.08; P = 0.647). CONCLUSION: The use of AI-CAD for CR interpretation in pulmonology outpatients was independently associated with an increased frequency of overall referrals for chest CT scans and referrals with subsequent negative results.


Asunto(s)
Inteligencia Artificial , Neumología , Masculino , Humanos , Anciano , Tomografía Computarizada por Rayos X , Computadores , Instituciones de Atención Ambulatoria , Derivación y Consulta
10.
Bioengineering (Basel) ; 10(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37760179

RESUMEN

OBJECTIVE: Prior studies on models based on deep learning (DL) and measuring the cardiothoracic ratio (CTR) on chest radiographs have lacked rigorous agreement analyses with radiologists or reader tests. We validated the performance of a commercially available DL-based CTR measurement model with various thoracic pathologies, and performed agreement analyses with thoracic radiologists and reader tests using a probabilistic-based reference. MATERIALS AND METHODS: This study included 160 posteroanterior view chest radiographs (no lung or pleural abnormalities, pneumothorax, pleural effusion, consolidation, and n = 40 in each category) to externally test a DL-based CTR measurement model. To assess the agreement between the model and experts, intraclass or interclass correlation coefficients (ICCs) were compared between the model and two thoracic radiologists. In the reader tests with a probabilistic-based reference standard (Dawid-Skene consensus), we compared diagnostic measures-including sensitivity and negative predictive value (NPV)-for cardiomegaly between the model and five other radiologists using the non-inferiority test. RESULTS: For the 160 chest radiographs, the model measured a median CTR of 0.521 (interquartile range, 0.446-0.59) and a mean CTR of 0.522 ± 0.095. The ICC between the two thoracic radiologists and between the model and two thoracic radiologists was not significantly different (0.972 versus 0.959, p = 0.192), even across various pathologies (all p-values > 0.05). The model showed non-inferior diagnostic performance, including sensitivity (96.3% versus 97.8%) and NPV (95.6% versus 97.4%) (p < 0.001 in both), compared with the radiologists for all 160 chest radiographs. However, it showed inferior sensitivity in chest radiographs with consolidation (95.5% versus 99.9%; p = 0.082) and NPV in chest radiographs with pleural effusion (92.9% versus 94.6%; p = 0.079) and consolidation (94.1% versus 98.7%; p = 0.173). CONCLUSION: While the sensitivity and NPV of this model for diagnosing cardiomegaly in chest radiographs with consolidation or pleural effusion were not as high as those of the radiologists, it demonstrated good agreement with the thoracic radiologists in measuring the CTR across various pathologies.

11.
J Thorac Imaging ; 38(3): 145-153, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36744946

RESUMEN

PURPOSE: To evaluate the accuracy of a deep learning-based computer-aided detection (CAD) system in identifying active pulmonary tuberculosis on chest radiographs (CRs) of patients with positive interferon-gamma release assay (IGRA) results in different scenarios of clinical implementation. MATERIALS AND METHODS: We collected the CRs of consecutive patients with positive IGRA results. Findings of active pulmonary tuberculosis on CRs were independently evaluated by the CAD and a thoracic radiologist, followed by interpretation using the CAD. Sensitivity and specificity were evaluated in different scenarios: (a) radiologists' interpretation, (b) radiologists' CAD-assisted interpretation, and (c) CAD-based prescreening (radiologists' interpretation for positive CAD results only). We conducted a reader test to compare the accuracy of the CAD with those of 5 radiologists. RESULTS: Among 1780 patients (men, 53.8%; median age, 56 y), 44 (2.5%) were diagnosed with active pulmonary tuberculosis. The CAD-assisted interpretation exhibited a higher sensitivity (81.8% vs. 72.7%; P =0.046) but lower specificity than the radiologists' interpretation (84.1% vs. 85.7%; P <0.001). The CAD-based prescreening exhibited a higher specificity than the radiologists' interpretation (88.8% vs. 85.7%; P <0.001) at the same sensitivity, with a workload reduction of 85.2% (1780 to 263). In the reader test, the CAD exhibited a higher sensitivity than radiologists (72.7% vs. 59.5%; P =0.005) at the same specificity (88.0%), and CAD-assisted interpretation significantly improved the sensitivity of radiologists' interpretation (72.3%; P <0.001). CONCLUSIONS: For identifying active pulmonary tuberculosis among patients with positive IGRA results, deep learning-based CAD can enhance the sensitivity of interpretation. CAD-based prescreening may reduce the radiologists' workload at an improved specificity.


Asunto(s)
Aprendizaje Profundo , Tuberculosis Pulmonar , Tuberculosis , Masculino , Humanos , Persona de Mediana Edad , Ensayos de Liberación de Interferón gamma , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Sensibilidad y Especificidad , Tuberculosis Pulmonar/diagnóstico por imagen , Computadores , Estudios Retrospectivos
12.
Diagnostics (Basel) ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359462

RESUMEN

The aim of this study was to evaluate the CT and PET-CT features of solitary pulmonary capillary hemangioma (SPCH) with clinicopathologic correlations. This retrospective study included 17 patients with histologically proven SPCH from four tertiary institutions. The clinical, pathological and imaging findings of SPCH were reviewed. The CT features assessed included lesion location, size, density, contour, margin, enhancement, presence of air bronchogram, perivascular lucency and pleural retraction, and 18F-fluorodeoxyglucose uptake on PET-CT. Changes in the size during the follow-up period were also evaluated. Imaging features were correlated with the clinicopathologic findings. The mean age of the patients was 47 years (range 30-60 years). All SPCHs were incidentally detected during screening CT examinations (n = 13, 76%) or during cancer work-up (n = 4, 24%). Most SPCHs appeared as part-solid nodules (n = 15, 88%), the remaining appeared as a pure ground-glass nodule or a pure solid nodule, respectively. Most had smooth contours (n = 16, 94%), while one had a lobulated contour. Nine SPCHs (53%) showed ill-defined margins. Air bronchogram was present in ten (59%) SPCHs, and perivascular lucency in two (12%). All SPCHs exhibited hypoattenuation on contrast-enhanced CT and hypometabolism on PET-CT. During the follow-up period (mean 14.8 ± 17.7 months), the lesions showed no change in size or density in ten SPCHs (59%), decreased or fluctuation in size and density in three (18%). SPCH is often incidentally detected in young and middle-aged adults, commonly as an ill-defined part-solid nodule that may accompany air bronchogram, perivascular lucency, and fluctuation in size or density on CT and hypometabolism on PET-CT.

13.
Clin Imaging ; 90: 11-18, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35908455

RESUMEN

PURPOSE: Common CT abnormalities of pulmonary aspergillosis represent a cavity with air-meniscus sign, nodule, mass, and consolidation having an angio-invasive pattern. This study aims to conduct a systematic review and an individual patient-level image analysis of CT findings of COVID-19-associated pulmonary aspergillosis (CAPA). METHODS: A systematic literature search was conducted to identify studies reporting CT findings of CAPA as of January 7, 2021. We summarized study-level clinical and CT findings of CAPA and collected individual patient CT images by inviting corresponding authors. The CT findings were categorized into four groups: group 1, typical appearance of COVID-19; group 2, indeterminate appearance of COVID-19; group 3, atypical for COVID-19 without cavities; and group 4, atypical for COVID-19 with cavities. In group 2, cases had only minor discrepant findings including solid nodules, isolated airspace consolidation with negligible ground-glass opacities, centrilobular micronodules, bronchial abnormalities, and cavities. RESULTS: The literature search identified 89 patients from 25 studies, and we collected CT images from 35 CAPA patients (mean age 62.4 ± 14.6 years; 21 men): group 1, thirteen patients (37.1%); group 2, eight patients (22.9%); group 3, six patients (17.1%); and group 4, eight patients (22.9%). Eight of the 14 patients (57.1%) with an atypical appearance had bronchial abnormalities, whereas only one (7.1%) had an angio-invasive fungal pattern. In the study-level analysis, cavities were reported in 12 of 54 patients (22.2%). CONCLUSION: CAPA can frequently manifest as COVID-19 pneumonia without common CT abnormalities of pulmonary aspergillosis. If abnormalities exist on CT images, CAPA may frequently accompany bronchial abnormalities.


Asunto(s)
COVID-19 , Aspergilosis Pulmonar , Anciano , COVID-19/complicaciones , Análisis de Datos , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
14.
Korean J Radiol ; 22(7): 1203-1212, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33938644

RESUMEN

OBJECTIVE: To investigate the diagnostic accuracy and complications of cone-beam CT-guided percutaneous transthoracic needle biopsy (PTNB) of juxtaphrenic lesions and identify the risk factors for diagnostic failure and complications. MATERIALS AND METHODS: In total, 336 PTNB procedures for lung lesions (mean size ± standard deviation [SD], 4.3 ± 2.3 cm) abutting the diaphragm in 326 patients (189 male and 137 female; mean age ± SD, 65.2 ± 11.4 years) performed between January 2010 and December 2014 were included. The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the PTNB procedures for the diagnosis of malignancy were measured based on the intention-to-diagnose principle. The risk factors for diagnostic failures and complications were evaluated using logistic regression analysis. RESULTS: The accuracy, sensitivity, specificity, PPV, and NPV were 92.7% (293/316), 91.3% (219/240), 91.4% (74/81), 96.9% (219/226), and 77.9% (74/95), respectively. There were 23 diagnostic failures (7.3%), and lesion sizes ≤ 2 cm (p = 0.045) were the only significant risk factors for diagnostic failure. Complications occurred in 98 cases (29.2%), including 89 cases of pneumothorax (26.5%) and 7 cases of hemoptysis (2.1%). The multivariable analysis showed that old age (> 65 years) (p = 0.002), lesion size of ≤ 2 cm (p = 0.003), emphysema (p = 0.006), and distance from the pleura to the target lesion (> 2 cm) (p = 0.010) were significant risk factors for complications. CONCLUSION: The diagnostic accuracy of cone-beam CT-guided PTNB of juxtaphrenic lesions for malignancy was fairly high, and the target lesion size was the only significant predictor of diagnostic failure. Complications of cone-beam CT-guided PTNB of juxtaphrenic lesions occurred at a reasonable rate.


Asunto(s)
Neoplasias Pulmonares , Neumotórax , Anciano , Biopsia con Aguja , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Biopsia Guiada por Imagen , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Neumotórax/etiología , Radiografía Intervencional , Estudios Retrospectivos , Sensibilidad y Especificidad
15.
Korean J Radiol ; 22(1): 63-71, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783411

RESUMEN

OBJECTIVE: To identify the CT findings associated with treatment failure after antibiotic therapy for acute appendicitis. MATERIALS AND METHODS: Altogether, 198 patients who received antibiotic therapy for appendicitis were identified by searching the hospital's surgery database. Selection criteria for antibiotic therapy were uncomplicated appendicitis with an appendiceal diameter equal to or less than 11 mm. The 86 patients included in the study were divided into a treatment success group and a treatment failure group. Treatment failure was defined as a resistance to antibiotic therapy or recurrent appendicitis during a 1-year follow-up period. Two radiologists independently evaluated the following CT findings: appendix-location, involved extent, maximal diameter, thickness, wall enhancement, focal wall defect, periappendiceal fat infiltration, and so on. For the quantitative analysis, two readers independently measured the CT values at the least attenuated wall of the appendix by drawing a round region of interest on the enhanced CT (HUpost) and non-enhanced CT (HUpre). The degree of appendiceal wall enhancement (HUsub) was calculated as the subtracted value between HUpost and HUpre. A logistic regression analysis was used to identify the CT findings associated with treatment failure. RESULTS: Sixty-four of 86 (74.4%) patients were successfully treated with antibiotic therapy, with treatment failure occurring in the remaining 22 (25.5%). The treatment failure group showed a higher frequency of hypoenhancement of the appendiceal wall than the success group (31.8% vs. 7.8%; p = 0.005). Upon quantitative analysis, both HUpost (46.7 ± 21.3 HU vs. 58.9 ± 22.0 HU; p = 0.027) and HUsub (26.9 ± 17.3 HU vs. 35.4 ± 16.6 HU; p = 0.042) values were significantly lower in the treatment failure group than in the success group. CONCLUSION: Hypoenhancement of the appendiceal wall was significantly associated with treatment failure after antibiotic therapy for acute appendicitis.


Asunto(s)
Antibacterianos/uso terapéutico , Apendicitis/tratamiento farmacológico , Apéndice/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Enfermedad Aguda , Adulto , Apendicitis/diagnóstico por imagen , Apendicitis/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Insuficiencia del Tratamiento , Adulto Joven
16.
Ultrasonography ; 39(3): 288-297, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32311869

RESUMEN

PURPOSE: This study aimed to assess the technical performance of ElastQ Imaging compared with ElastPQ and to investigate the correlation between liver stiffness (LS) values obtained using these two techniques. METHODS: This retrospective study included 249 patients who underwent LS measurements using both ElastPQ and ElastQ Imaging equipped on the same machine. The applicability, repeatability (coefficient of variation [CV]), acquisition time, and LS values were compared using the chi-square or Wilcoxon signed-rank tests. In the development group, the correlation between the LS values obtained by the two techniques was assessed with Spearman correlation coefficients and linear regression analysis. In the validation group, the agreement between the estimated and real LS values was evaluated using a Bland-Altman plot. RESULTS: ElastQ Imaging had higher applicability (94.0% vs. 78.3%, P<0.001) and higher repeatability, with a lower median CV (0.127 vs. 0.164, P<0.001) than did ElastPQ. The median acquisition time of ElastQ Imaging was significantly shorter than that of ElastPQ (45.5 seconds vs. 96.5 seconds, P<0.001). The median LS value obtained using ElastQ Imaging was significantly higher than that obtained using ElastPQ (5.60 kPa vs. 5.23 kPa, P<0.001). The LS values between the two techniques exhibited a strong positive correlation (r=0.851, P<0.001) in the development group. The mean difference and 95% limits of agreement were 0.0 kPa (-3.9 to 3.9 kPa) in the validation group. CONCLUSION: ElastQ Imaging may be more reliable and faster than ElastPQ, with strongly correlated LS measurements.

17.
Korean J Radiol ; 20(4): 599-608, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30887742

RESUMEN

OBJECTIVE: To evaluate the effectiveness of computed tomography (CT) Hounsfield unit histogram analysis (HUHA) in postoperative pancreatic fistula (PF) prediction. MATERIALS AND METHODS: Fifty-four patients (33 males and 21 females; mean age, 65.6 years; age range, 37-89 years) who had undergone preoperative CT and pancreaticoduodenectomy were included in this retrospective study. Two radiologists measured mean CT Hounsfield unit (CTHU) values by drawing regions of interest (ROIs) at the level of the pancreaticojejunostomy site on preoperative pre-contrast images. The HUHA values were arbitrarily divided into three categories, comprising HUHA-A ≤ 0 HU, 0 HU < HUHA-B < 30 HU, and HUHA-C ≥ 30 HU. Each HUHA value within the ROI was calculated as a percentage of the entire area using commercial 3-dimensional analysis software. Pancreas texture was evaluated as soft or hard by manual palpation. RESULTS: Fifteen patients (27.8%) had clinically relevant PFs. The PF group had significantly higher HUHA-A (p < 0.01) and significantly lower mean CTHU (p < 0.01) values than those of the non-PF group. The HUHA-A value had a moderately strong correlation with PF occurrence (r = 0.60, p < 0.01), whereas the mean CTHU had a weak negative correlation with PF occurrence (r = -0.27, p < 0.01). The HUHA-A and mean CTHU areas under the curve (AUCs) for predicting PF occurrence were 0.86 and 0.65, respectively, with significant difference (p < 0.01). The HUHA-A and mean CTHU AUCs for predicting pancreatic softness were 0.86 and 0.64, respectively, with significant difference (p < 0.01). CONCLUSION: The HUHA-A values on preoperative pre-contrast CT images demonstrate a strong correlation with PF occurrence.


Asunto(s)
Páncreas/fisiología , Fístula Pancreática/diagnóstico , Pancreaticoduodenectomía/efectos adversos , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Páncreas/diagnóstico por imagen , Páncreas/cirugía , Fístula Pancreática/etiología , Complicaciones Posoperatorias , Curva ROC , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA