Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118671, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506448

RESUMEN

Global warming is expected to cause hotter, drier summers and more extreme weather events including heat waves and droughts. A little understood aspect of this is its effects on the efficacy of fertilisers and related nutrient losses into the environment. We explored the effects of high soil temperature (>25 °C) and low soil moisture (<40% water filled pore space; WFPS) on emissions of ammonia (NH3) and nitrous oxide (N2O) following application of urea to soil and the efficacy of urease inhibitors (UI) in slowing N losses. We incubated soil columns at three temperatures (15, 25, 35 °C) and three soil moisture contents (20, 40, 60% WFPS) with urea applied on the soil surface with and without UIs, and measured NH3 and N2O emissions using chambers placed over the columns. Four fertiliser treatments were applied in triplicate in a randomised complete block design: (1) urea; (2) urea with a single UI (N-(n-butyl) thiophosphoric triamide (NBPT); (3) urea with two UI (NBPT and N-(n-propyl) thiophosphoric triamide; NPPT); and (4) a zero N control. Inclusion of UI with urea, relative to urea alone, delayed and reduced peak NH3 emissions. However, the efficacy of UI was reduced with increasing temperature and decreasing soil moisture. Cumulative NH3 emission did not differ between the two UI treatments for a given set of conditions and was reduced by 22-87% compared with urea alone. Maximum cumulative NH3 emission occurred at 35 °C and 20% WFPS, accounting for 31% of the applied N for the urea treatment and 25%, on average for the UI treatments. Urease inhibitors did not influence N2O emissions; however, there were interactive impacts of temperature and moisture, with higher cumulative emissions at 40% WFPS and 15 and 25 °C accounting for 1.85-2.62% of the applied N, whereas at 35 °C there was greater N2O emission at 60% WFPS. Our results suggest that inclusion of UI with urea effectively reduces NH3 losses at temperatures reaching 35 °C, although overall effectiveness decreases with increasing temperature, particularly under low soil moisture conditions.


Asunto(s)
Gases , Nitrógeno , Gases/análisis , Nitrógeno/análisis , Fertilizantes/análisis , Calor , Ureasa , Suelo , Amoníaco/análisis , Óxido Nitroso/análisis , Urea , Agricultura/métodos
2.
J Environ Manage ; 330: 117096, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608604

RESUMEN

Healthy soils are key to sustainability and food security. In temperate grasslands, not many studies have focused on soil health comparisons between contrasting pasture systems under different management strategies and treatment applications (e.g. manures and inorganic fertilisers). The aim of this study was to assess the responses of soil health indicators to dung, urine and inorganic N fertiliser in three temperate swards: permanent pasture not ploughed for at least 20 years (PP), high sugar ryegrass with white clover targeted at 30% coverage reseeded in 2013 (WC), and high sugar ryegrass reseeded in 2014 (HG). This study was conducted on the North Wyke Farm Platform (UK) from April 2017 to October 2017. Soil health indicators including soil organic carbon (SOC, measured by loss of ignition and elemental analyser), dissolved organic carbon (DOC), total nitrogen (TN), C:N ratio, soil C and N bulk isotopes, pH, bulk density (BD), aggregate stability, ergosterol concentration (as a proxy for fungi biomass), and earthworms (abundance, mass and density) were measured and analysed before and after application of dung and N fertilizer, urine and N fertiliser, and only N fertiliser. The highest SOC, TN, DOC, ergosterol concentration and earthworms as well as the lowest BD were found in PP, likely due to the lack of ploughing. Differences among treatments were observed due to the application of dung, resulting in an improvement in chemical indicators of soil health after 50 days of its application. Ergosterol concentration was significantly higher before treatment applications than at the end of the experiment. No changes were detected in BD and aggregate stability after treatment applications. We conclude that not enough time had passed for the soil to recover after the ploughing and reseeding of the permanent pasture, independently of the sward composition (HG or WC). Our results highlight the strong influence of the soil management legacy in temperate pasture and the positive effects of dung application on soil health over the short term. In addition, we point out the relevance of using standardised methods to report soil health indicators and some methodological limitations.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Fertilizantes/análisis , Minerales , Ergosterol , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA