Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(3): 766-778, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27453469

RESUMEN

The ability to reliably and reproducibly measure any protein of the human proteome in any tissue or cell type would be transformative for understanding systems-level properties as well as specific pathways in physiology and disease. Here, we describe the generation and verification of a compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated human proteins by the widely accessible, sensitive, and robust targeted mass spectrometric method selected reaction monitoring, SRM. This human SRMAtlas provides definitive coordinates that conclusively identify the respective peptide in biological samples. We report data on 166,174 proteotypic peptides providing multiple, independent assays to quantify any human protein and numerous spliced variants, non-synonymous mutations, and post-translational modifications. The data are freely accessible as a resource at http://www.srmatlas.org/, and we demonstrate its utility by examining the network response to inhibition of cholesterol synthesis in liver cells and to docetaxel in prostate cancer lines.


Asunto(s)
Bases de Datos de Proteínas , Proteoma , Acceso a la Información , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Colesterol/biosíntesis , Docetaxel , Femenino , Humanos , Internet , Hígado/efectos de los fármacos , Masculino , Mutación , Neoplasias de la Próstata/tratamiento farmacológico , Empalme del ARN , Taxoides/uso terapéutico
2.
Am J Respir Cell Mol Biol ; 68(6): 651-663, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36780661

RESUMEN

The integration of transcriptomic and proteomic data from lung tissue with chronic obstructive pulmonary disease (COPD)-associated genetic variants could provide insight into the biological mechanisms of COPD. Here, we assessed associations between lung transcriptomics and proteomics with COPD in 98 subjects from the Lung Tissue Research Consortium. Low correlations between transcriptomics and proteomics were generally observed, but higher correlations were found for COPD-associated proteins. We integrated COPD risk SNPs or SNPs near COPD-associated proteins with lung transcripts and proteins to identify regulatory cis-quantitative trait loci (QTLs). Significant expression QTLs (eQTLs) and protein QTLs (pQTLs) were found regulating multiple COPD-associated biomarkers. We investigated mediated associations from significant pQTLs through transcripts to protein levels of COPD-associated proteins. We also attempted to identify colocalized effects between COPD genome-wide association studies and eQTL and pQTL signals. Evidence was found for colocalization between COPD genome-wide association study signals and a pQTL for RHOB and an eQTL for DSP. We applied weighted gene co-expression network analysis to find consensus COPD-associated network modules. Two network modules generated by consensus weighted gene co-expression network analysis were associated with COPD with a false discovery rate lower than 0.05. One network module is related to the catenin complex, and the other module is related to plasma membrane components. In summary, multiple cis-acting determinants of transcripts and proteins associated with COPD were identified. Colocalization analysis, mediation analysis, and correlation-based network analysis of multiple omics data may identify key genes and proteins that work together to influence COPD pathogenesis.


Asunto(s)
Proteómica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudio de Asociación del Genoma Completo , Transcriptoma/genética , Predisposición Genética a la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Polimorfismo de Nucleótido Simple
3.
J Proteome Res ; 22(2): 615-624, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36648445

RESUMEN

The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Espectrometría de Masas , Probabilidad , Análisis de Datos
4.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36629399

RESUMEN

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Proteínas/química , Programas Informáticos , Reactivos de Enlaces Cruzados/química
5.
J Proteome Res ; 22(2): 561-569, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598107

RESUMEN

The Crux tandem mass spectrometry data analysis toolkit provides a collection of algorithms for analyzing bottom-up proteomics tandem mass spectrometry data. Many publications have described various individual components of Crux, but a comprehensive summary has not been published since 2014. The goal of this work is to summarize the functionality of Crux, focusing on developments since 2014. We begin with empirical results demonstrating our recently implemented speedups to the Tide search engine. Other new features include a new score function in Tide, two new confidence estimation procedures, as well as three new tools: Param-medic for estimating search parameters directly from mass spectrometry data, Kojak for searching cross-linked mass spectra, and DIAmeter for searching data independent acquisition data against a sequence database.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Bases de Datos de Proteínas , Algoritmos
6.
PLoS Pathog ; 17(2): e1009293, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534803

RESUMEN

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.


Asunto(s)
Retículo Endoplásmico/parasitología , Proteínas del Choque Térmico HSP40/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Tiorredoxina Reductasa 2/metabolismo , Antimaláricos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Chaperonas Moleculares , Oxidación-Reducción , Estrés Oxidativo , Pliegue de Proteína , Proteínas Protozoarias/genética , Tiorredoxina Reductasa 2/genética
7.
Anal Chem ; 94(8): 3501-3509, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35184559

RESUMEN

Drugs are often metabolized to reactive intermediates that form protein adducts. Adducts can inhibit protein activity, elicit immune responses, and cause life-threatening adverse drug reactions. The masses of reactive metabolites are frequently unknown, rendering traditional mass spectrometry-based proteomics approaches incapable of adduct identification. Here, we present Magnum, an open-mass search algorithm optimized for adduct identification, and Limelight, a web-based data processing package for analysis and visualization of data from all existing algorithms. Limelight incorporates tools for sample comparisons and xenobiotic-adduct discovery. We validate our tools with three drug/protein combinations and apply our label-free workflow to identify novel xenobiotic-protein adducts in CYP3A4. Our new methods and software enable accurate identification of xenobiotic-protein adducts with no prior knowledge of adduct masses or protein targets. Magnum outperforms existing label-free tools in xenobiotic-protein adduct discovery, while Limelight fulfills a major need in the rapidly developing field of open-mass searching, which until now lacked comprehensive data visualization tools.


Asunto(s)
Proteínas , Proteómica , Algoritmos , Aductos de ADN , Espectrometría de Masas/métodos , Proteínas/análisis , Proteómica/métodos , Programas Informáticos
8.
J Proteome Res ; 20(4): 1911-1917, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529024

RESUMEN

The efficiency of shotgun proteomic analysis is dependent on the reproducibility of the peptide cleavage process during sample preparation. To generate rapid and useful metrics for peptide cleavage efficiency, as in enzymatic or chemical cleavage, SPACEPro was developed to evaluate efficiency and reproducibility of protein cleavage in peptide samples following data-dependent analysis by mass spectrometry. SPACEPro analyzes samples at the peptide-spectrum match (PSM), peptide, and protein levels to provide a comprehensive representation of the overall sample processing to peptides. All output is provided in human-readable text and JSON files that can be further processed to assess the cleavage efficiency on proteins within the sample. SPACEPro provides a snapshot of the protein cleavage efficiency through very minimal effort so that the user is informed of the quality of the sample processing efficiency and can accordingly develop protocols to improve the initial sample preparation for subsequent analyses.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Humanos , Reproducibilidad de los Resultados , Programas Informáticos , Tripsina
9.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1119-L1130, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668408

RESUMEN

Identifying protein biomarkers for chronic obstructive pulmonary disease (COPD) has been challenging. Most previous studies have used individual proteins or preselected protein panels measured in blood samples. Mass spectrometry proteomic studies of lung tissue have been based on small sample sizes. We used mass spectrometry proteomic approaches to discover protein biomarkers from 150 lung tissue samples representing COPD cases and controls. Top COPD-associated proteins were identified based on multiple linear regression analysis with false discovery rate (FDR) < 0.05. Correlations between pairs of COPD-associated proteins were examined. Machine learning models were also evaluated to identify potential combinations of protein biomarkers related to COPD. We identified 4,407 proteins passing quality controls. Twenty-five proteins were significantly associated with COPD at FDR < 0.05, including interleukin 33, ferritin (light chain and heavy chain), and two proteins related to caveolae (CAV1 and CAVIN1). Multiple previously reported plasma protein biomarkers for COPD were not significantly associated with proteomic analysis of COPD in lung tissue, although RAGE was borderline significant. Eleven pairs of top significant proteins were highly correlated (r > 0.8), including several strongly correlated with RAGE (EHD2 and CAVIN1). Machine learning models using Random Forests with the top 5% of protein biomarkers demonstrated reasonable accuracy (0.707) and area under the curve (0.714) for COPD prediction. Mass spectrometry-based proteomic analysis of lung tissue is a promising approach for the identification of biomarkers for COPD.


Asunto(s)
Biomarcadores/metabolismo , Pulmón/metabolismo , Espectrometría de Masas/métodos , Proteoma/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteoma/análisis , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
10.
J Proteome Res ; 19(12): 4754-4765, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33166149

RESUMEN

Mass spectrometry has greatly improved the analysis of phosphorylation events in complex biological systems and on a large scale. Despite considerable progress, the correct identification of phosphorylated sites, their quantification, and their interpretation regarding physiological relevance remain challenging. The MS Resource Pillar of the Human Proteome Organization (HUPO) Human Proteome Project (HPP) initiated the Phosphopeptide Challenge as a resource to help the community evaluate methods, learn procedures and data analysis routines, and establish their own workflows by comparing results obtained from a standard set of 94 phosphopeptides (serine, threonine, tyrosine) and their nonphosphorylated counterparts mixed at different ratios in a neat sample and a yeast background. Participants analyzed both samples with their method(s) of choice to report the identification and site localization of these peptides, determine their relative abundances, and enrich for the phosphorylated peptides in the yeast background. We discuss the results from 22 laboratories that used a range of different methods, instruments, and analysis software. We reanalyzed submitted data with a single software pipeline and highlight the successes and challenges in correct phosphosite localization. All of the data from this collaborative endeavor are shared as a resource to encourage the development of even better methods and tools for diverse phosphoproteomic applications. All submitted data and search results were uploaded to MassIVE (https://massive.ucsd.edu/) as data set MSV000085932 with ProteomeXchange identifier PXD020801.


Asunto(s)
Fosfopéptidos , Proteoma , Humanos , Espectrometría de Masas , Fosforilación , Proteómica
11.
J Proteome Res ; 18(12): 4262-4272, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31290668

RESUMEN

Spectral matching sequence database search engines commonly used on mass spectrometry-based proteomics experiments excel at identifying peptide sequence ions, and in addition, possible sequence ions carrying post-translational modifications (PTMs), but most do not provide confidence metrics for the exact localization of those PTMs when several possible sites are available. Localization is absolutely required for downstream molecular cell biology analysis of PTM function in vitro and in vivo. Therefore, we developed PTMProphet, a free and open-source software tool integrated into the Trans-Proteomic Pipeline, which reanalyzes identified spectra from any search engine for which pepXML output is available to provide localization confidence to enable appropriate further characterization of biologic events. Localization of any type of mass modification (e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture models to compute probabilities for each site/peptide spectrum match where a PTM has been identified. These probabilities can be combined to compute a global false localization rate at any threshold to guide downstream analysis. We describe the PTMProphet tool, its underlying algorithms, and demonstrate its performance on ground-truth synthetic peptide reference data sets, one previously published small data set, one new larger data set, and also on a previously published phosphoenriched data set where the correct sites of modification are unknown. Data have been deposited to ProteomeXchange with identifier PXD013210.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica/métodos , Programas Informáticos , Algoritmos , Teorema de Bayes , Bases de Datos de Proteínas , Humanos , Fosfopéptidos/metabolismo , Interfaz Usuario-Computador
12.
Anal Chem ; 91(11): 6953-6961, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31045356

RESUMEN

The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/química , Laboratorios , Espectrometría de Masas/instrumentación , Reproducibilidad de los Resultados
14.
J Proteome Res ; 17(3): 1314-1320, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29400476

RESUMEN

Label-free quantification has grown in popularity as a means of obtaining relative abundance measures for proteomics experiments. However, easily accessible and integrated tools to perform label-free quantification have been lacking. We describe StPeter, an implementation of Normalized Spectral Index quantification for wide availability through integration into the widely used Trans-Proteomic Pipeline. This implementation has been specifically designed for reproducibility and ease of use. We demonstrate that StPeter outperforms other state-of-the art packages using a recently reported benchmark data set over the range of false discovery rates relevant to shotgun proteomics results. We also demonstrate that the software is computationally efficient and supports data from a variety of instrument platforms and experimental designs. Results can be viewed within the Trans-Proteomic Pipeline graphical user interfaces and exported in standard formats for downstream statistical analysis. By integrating StPeter into the freely available Trans-Proteomic Pipeline, users can now obtain high-quality label-free quantification of any data set in seconds by adding a single command to the workflow.


Asunto(s)
Conjuntos de Datos como Asunto/estadística & datos numéricos , Espectrometría de Masas/estadística & datos numéricos , Proteómica/métodos , Interfaz Usuario-Computador , Animales , Benchmarking , Gráficos por Computador/estadística & datos numéricos , Bases de Datos de Proteínas , Escherichia coli/química , Humanos , Internet , Espectrometría de Masas/métodos , Proteómica/estadística & datos numéricos
15.
J Proteome Res ; 17(5): 1879-1886, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29631402

RESUMEN

A natural way to benchmark the performance of an analytical experimental setup is to use samples of known composition and see to what degree one can correctly infer the content of such a sample from the data. For shotgun proteomics, one of the inherent problems of interpreting data is that the measured analytes are peptides and not the actual proteins themselves. As some proteins share proteolytic peptides, there might be more than one possible causative set of proteins resulting in a given set of peptides and there is a need for mechanisms that infer proteins from lists of detected peptides. A weakness of commercially available samples of known content is that they consist of proteins that are deliberately selected for producing tryptic peptides that are unique to a single protein. Unfortunately, such samples do not expose any complications in protein inference. Hence, for a realistic benchmark of protein inference procedures, there is a need for samples of known content where the present proteins share peptides with known absent proteins. Here, we present such a standard, that is based on E. coli expressed human protein fragments. To illustrate the application of this standard, we benchmark a set of different protein inference procedures on the data. We observe that inference procedures excluding shared peptides provide more accurate estimates of errors compared to methods that include information from shared peptides, while still giving a reasonable performance in terms of the number of identified proteins. We also demonstrate that using a sample of known protein content without proteins with shared tryptic peptides can give a false sense of accuracy for many protein inference methods.


Asunto(s)
Algoritmos , Benchmarking/métodos , Proteómica/métodos , Homología de Secuencia de Aminoácido , Benchmarking/normas , Escherichia coli/metabolismo , Humanos , Fragmentos de Péptidos/análisis , Péptidos/análisis , Proteínas/análisis , Proteínas/metabolismo , Tripsina/metabolismo
16.
J Proteome Res ; 16(2): 945-957, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27990823

RESUMEN

Detection of differentially abundant proteins in label-free quantitative shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments requires a series of computational steps that identify and quantify LC-MS features. It also requires statistical analyses that distinguish systematic changes in abundance between conditions from artifacts of biological and technical variation. The 2015 study of the Proteome Informatics Research Group (iPRG) of the Association of Biomolecular Resource Facilities (ABRF) aimed to evaluate the effects of the statistical analysis on the accuracy of the results. The study used LC-tandem mass spectra acquired from a controlled mixture, and made the data available to anonymous volunteer participants. The participants used methods of their choice to detect differentially abundant proteins, estimate the associated fold changes, and characterize the uncertainty of the results. The study found that multiple strategies (including the use of spectral counts versus peak intensities, and various software tools) could lead to accurate results, and that the performance was primarily determined by the analysts' expertise. This manuscript summarizes the outcome of the study, and provides representative examples of good computational and statistical practice. The data set generated as part of this study is publicly available.


Asunto(s)
Cromatografía Liquida/normas , Ensayos de Aptitud de Laboratorios , Proteoma/aislamiento & purificación , Proteómica/normas , Espectrometría de Masas en Tándem/normas , Interpretación Estadística de Datos , Humanos , Competencia Profesional , Proteoma/normas , Proteómica/instrumentación , Proteómica/métodos , Reproducibilidad de los Resultados , Incertidumbre
18.
J Proteome Res ; 15(3): 809-14, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26549429

RESUMEN

High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods.


Asunto(s)
Biología Computacional/normas , Espectrometría de Masas/métodos , Algoritmos , Biología Computacional/métodos , Proteómica/métodos
19.
J Proteome Res ; 14(5): 2190-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25812159

RESUMEN

Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies; however, complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms and can identify cross-linked peptides using many different chemical cross-linkers with or without heavy isotope labels. Kojak was used to analyze both novel and existing data sets and was compared to existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms and, equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing data sets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods.


Asunto(s)
Algoritmos , Mapeo de Interacción de Proteínas/estadística & datos numéricos , Proteómica/estadística & datos numéricos , Programas Informáticos , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/química , Criptocromos/química , Bases de Datos de Proteínas , Proteínas F-Box/química , Humanos , Datos de Secuencia Molecular , Proteómica/economía , Proteómica/métodos , Proteínas Quinasas Asociadas a Fase-S/química , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Espectrometría de Masas en Tándem , Factores de Tiempo
20.
Anal Chem ; 87(24): 12230-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26560994

RESUMEN

High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas phase ions according to their characteristic dependence of ion mobility on electric field strength. FAIMS can be implemented as a means of automated gas-phase fractionation in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments. We modified a commercially available cylindrical FAIMS device by enlarging the inner electrode, thereby narrowing the gap and increasing the effective field strength. This modification provided a nearly 4-fold increase in FAIMS peak capacity over the optimally configured unmodified device. We employed the modified FAIMS device for on-line fractionation in a proteomic analysis of a complex sample and observed major increases in protein discovery. NanoLC-FAIMS-MS/MS of an unfractionated yeast tryptic digest using the modified FAIMS device identified 53% more proteins than were identified using an unmodified FAIMS device and 98% more proteins than were identified with unaided nanoLC-MS/MS. We describe here the development of a nanoLC-FAIMS-MS/MS protocol that provides automated gas-phase fractionation for proteomic analysis of complex protein digests. We compare this protocol against prefractionation of peptides with isoelectric focusing and demonstrate that FAIMS fractionation yields comparable protein recovery while significantly reducing the amount of sample required and eliminating the need for additional sample handling.


Asunto(s)
Espectrometría de Masas/instrumentación , Proteínas/análisis , Humanos , Rayos Láser , Tamaño de la Partícula , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA