Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(4): 952-968, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38327046

RESUMEN

We analyzed retrospective data from toxicology studies involving administration of high doses of adeno-associated virus expressing different therapeutic transgenes to 21 cynomolgus and 15 rhesus macaques. We also conducted prospective studies to investigate acute toxicity following high-dose systemic administration of enhanced green fluorescent protein-expressing adeno-associated virus to 10 rhesus macaques. Toxicity was characterized by transaminitis, thrombocytopenia, and alternative complement pathway activation that peaked on post-administration day 3. Although most animals recovered, some developed ascites, generalized edema, hyperbilirubinemia, and/or coagulopathy that prompted unscheduled euthanasia. Study endpoint livers from animals that recovered and from unscheduled necropsies of those that succumbed to toxicity were analyzed via hypothesis-driven histopathology and unbiased single-nucleus RNA sequencing. All liver cell types expressed high transgene transcript levels at early unscheduled timepoints that subsequently decreased. Thrombocytopenia coincided with sinusoidal platelet microthrombi and sinusoidal endothelial injury identified via immunohistology and single-nucleus RNA sequencing. Acute toxicity, sinusoidal injury, and liver platelet sequestration were similarly observed with therapeutic transgenes and enhanced green fluorescent protein at doses ≥1 × 1014 GC/kg, suggesting it was the consequence of high-dose systemic adeno-associated virus administration, not green fluorescent protein toxicity. These findings highlight a potential toxic effect of high-dose intravenous adeno-associated virus on nonhuman primate liver microvasculature.


Asunto(s)
Dependovirus , Trombocitopenia , Animales , Dependovirus/genética , Macaca mulatta/genética , Estudios Prospectivos , Estudios Retrospectivos , Hígado/metabolismo , Transgenes , Trombocitopenia/metabolismo , Células Endoteliales , Vectores Genéticos/genética
2.
Mol Ther ; 27(5): 912-921, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30819613

RESUMEN

Efficient delivery of gene therapy vectors across the blood-brain barrier (BBB) is the holy grail of neurological disease therapies. A variant of the neurotropic vector adeno-associated virus (AAV) serotype 9, called AAV-PHP.B, was shown to very efficiently deliver transgenes across the BBB in C57BL/6J mice. Based on our recent observation that this phenotype is mouse strain dependent, we used whole-exome sequencing-based genetics to map this phenotype to a specific haplotype of lymphocyte antigen 6 complex, locus A (Ly6a) (stem cell antigen-1 [Sca-1]), which encodes a glycosylphosphatidylinositol (GPI)-anchored protein whose function had been thought to be limited to the biology of hematopoiesis. Additional biochemical and genetic studies definitively linked high BBB transport to the binding of AAV-PHP.B with LY6A (SCA-1). These studies identify, for the first time, a ligand for this GPI-anchored protein and suggest a role for it in BBB transport that could be hijacked by viruses in natural infections or by gene therapy vectors to treat neurological diseases.


Asunto(s)
Antígenos Ly/genética , Barrera Hematoencefálica/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética , Proteínas de la Membrana/genética , Animales , Antígenos Ly/farmacología , Transporte Biológico/genética , Encéfalo/efectos de los fármacos , Encéfalo/patología , Dependovirus/genética , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Glicosilfosfatidilinositoles/genética , Hematopoyesis/genética , Humanos , Proteínas de la Membrana/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Secuenciación del Exoma
3.
Cytokine ; 113: 470-474, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30377053

RESUMEN

Interleukin (IL)-22 plays a critical role in regulating the maintenance of the mucosal barrier. As airway epithelial regeneration is abnormal in cystic fibrosis (CF), we investigated IL-22 integrity in CF. We first demonstrated, using Il-22-/- mice, that IL-22 is important to prevent lung damage induced by the CF pathogen Pseudomonas aeruginosa. Next, IL-22 receptor was found normally expressed at the airway epithelial surfaces of CF patients. In wound-healing assays, IL-22-treated CF cultures had higher wound-closure rate than controls, suggesting that IL-22 signaling per se could be functional in a CF context. However, persistence of neutrophil-derived serine-proteases is a major feature of CF airways. Remarkably, IL-22 was found altered in this protease-rich inflammatory microenvironment; the serine protease-3 being the most prone to fully degrade IL-22. Consequently, we suspect an acquired deficiency of the IL-22 pathway in the lungs of CF patients due to IL-22 cleavage by the surrounding neutrophil serine-proteases.


Asunto(s)
Interleucinas/inmunología , Pulmón/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Mucosa Respiratoria/inmunología , Adolescente , Adulto , Anciano , Animales , Niño , Fibrosis Quística , Femenino , Humanos , Interleucinas/genética , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/patología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/patología , Interleucina-22
4.
Mol Ther ; 26(3): 664-668, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29428298

RESUMEN

Improved delivery of adeno-associated virus (AAV) vectors to the CNS will greatly enhance their clinical utility. Selection of AAV9 variants in a mouse model led to the isolation of a capsid called PHP.B, which resulted in remarkable transduction of the CNS following intravenous infusion. However, we now show here that this enhanced CNS tropism is restricted to the model in which it was selected, i.e., a Cre transgenic mouse in a C57BL/6J background, and was not found in nonhuman primates or the other commonly used mouse strain BALB/cJ. We also report the potential for serious acute toxicity in NHP after systemic administration of high dose of AAV.


Asunto(s)
Dependovirus/genética , Ingeniería Genética , Vectores Genéticos/genética , Animales , Biomarcadores , Proteínas de la Cápside/genética , Dependovirus/clasificación , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos/genética , Distribución Tisular , Transducción Genética
5.
Res Sq ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37461697

RESUMEN

Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily by epigenetic silencing the FXN gene due to up to 1400 GAA triplet repeats in intron 1 of both alleles of the gene; a subset of approximately 3% of FRDA patients have a mutation on one allele. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This was overcome by development of a species-specific quantitative mass spectrometry-based method, which revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response was non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.

6.
Commun Biol ; 6(1): 1093, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891254

RESUMEN

Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily through epigenetic silencing of the FXN gene by GAA triplet repeats on intron 1 of both alleles. GAA repeat lengths are most commonly between 600 and 1200 but can reach 1700. A subset of approximately 3% of FRDA patients have GAA repeats on one allele and a mutation on the other. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This could be overcome by the development of a species-specific quantitative mass spectrometry-based method, which has revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response is non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.


Asunto(s)
Ataxia de Friedreich , Proteínas de Unión a Hierro , Animales , Humanos , Macaca mulatta , Proteínas de Unión a Hierro/genética , Corazón , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Ataxia de Friedreich/metabolismo , Terapia Genética , Frataxina
7.
Front Immunol ; 14: 1094279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033976

RESUMEN

Immune responses to human non-self transgenes can present challenges in preclinical studies of adeno-associated virus (AAV) gene therapy candidates in nonhuman primates. Although anti-transgene immune responses are usually mild and non-adverse, they can confound pharmacological readouts and complicate translation of results between species. We developed a gene therapy candidate for Pompe disease consisting of AAVhu68, a clade F AAV closely related to AAV9, that expresses an engineered human acid-alpha glucosidase (hGAA) tagged with an insulin-like growth factor 2 variant (vIGF2) peptide for enhanced cell uptake. Rhesus macaques were administered an intravenous dose of 1x1013 genome copies (GC)/kg, 5x1013 GC/kg, or 1 x 1014 GC/kg of AAVhu68.vIGF2.hGAA. Some unusually severe adaptive immune responses to hGAA presented, albeit with a high degree of variability between animals. Anti-hGAA responses ranged from absent to severe cytotoxic T-cell-mediated myocarditis with elevated troponin I levels. Cardiac toxicity was not dose dependent and affected five out of eleven animals. Upon further investigation, we identified an association between toxicity and a major histocompatibility complex class I haplotype (Mamu-A002.01) in three of these animals. An immunodominant peptide located in the C-terminal region of hGAA was subsequently identified via enzyme-linked immunospot epitope mapping. Another notable observation in this preclinical safety study cohort pertained to the achievement of robust and safe gene transfer upon intravenous administration of 5x1013 GC/kg in one animal with a low pre-existing neutralizing anti-capsid antibodies titer (1:20). Collectively, these findings may have significant implications for gene therapy inclusion criteria.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Miocarditis , Humanos , Animales , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , Dependovirus , Macaca mulatta/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia
8.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37624734

RESUMEN

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Asunto(s)
Dependovirus , Enfermedades del Sistema Nervioso , Animales , Dependovirus/genética , Radioisótopos de Yodo , Cápside , Distribución Tisular , Transducción Genética , Terapia Genética/métodos , Tomografía de Emisión de Positrones , Vectores Genéticos/genética , Técnicas de Transferencia de Gen
9.
Hum Gene Ther ; 33(9-10): 499-517, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35333110

RESUMEN

Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.


Asunto(s)
Leucodistrofia de Células Globoides , Animales , Preescolar , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Macaca mulatta/genética , Ratones , Psicosina
10.
Sci Transl Med ; 12(569)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177182

RESUMEN

Delivering adeno-associated virus (AAV) vectors into the central nervous system of nonhuman primates (NHPs) via the blood or cerebral spinal fluid is associated with dorsal root ganglion (DRG) toxicity. Conventional immune-suppression regimens do not prevent this toxicity, possibly because it may be caused by high transduction rates, which can, in turn, cause cellular stress due to an overabundance of the transgene product in target cells. To test this hypothesis and develop an approach to eliminate DRG toxicity, we exploited endogenous expression of microRNA (miR) 183 complex, which is largely restricted to DRG neurons, to specifically down-regulate transgene expression in these cells. We introduced sequence targets for miR183 into the vector genome within the 3' untranslated region of the corresponding transgene messenger RNA and injected vectors into the cisterna magna of NHPs. Administration of unmodified AAV vectors resulted in robust transduction of target tissues and toxicity in DRG neurons. Consistent with the proposal that immune system activity does not mediate this neuronal toxicity, we found that steroid administration was ineffective in alleviating this pathology. However, including miR183 targets in the vectors reduced transgene expression in, and toxicity of, DRG neurons without affecting transduction elsewhere in the primate's brain. This approach might be useful in reducing DRG toxicity and the associated morbidity and should facilitate the development of AAV-based gene therapies for many central nervous system diseases.


Asunto(s)
Dependovirus , MicroARNs , Animales , Dependovirus/genética , Ganglios Espinales , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , MicroARNs/genética , Primates , Transducción Genética , Transgenes/genética
11.
Hum Gene Ther ; 31(15-16): 808-818, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845779

RESUMEN

The administration of adeno-associated virus (AAV) vectors to nonhuman primates (NHP) via the blood or cerebrospinal fluid (CSF) can lead to dorsal root ganglion (DRG) pathology. The pathology is minimal to moderate in most cases; clinically silent in affected animals; and characterized by mononuclear cell infiltrates, neuronal degeneration, and secondary axonopathy of central and peripheral axons on histopathological analysis. We aggregated data from 33 nonclinical studies in 256 NHP and performed a meta-analysis of the severity of DRG pathology to compare different routes of administration, dose, time course, study conduct, age of the animals, sex, capsid, promoter, capsid purification method, and transgene. DRG pathology was observed in 83% of NHP that were administered AAV through the CSF, and 32% of NHP that received an intravenous (IV) injection. We show that dose and age at injection significantly affected the severity whereas sex had no impact. DRG pathology was minimal at acute time points (i.e., <14 days), similar from one to 5 months post-injection, and was less severe after 6 months. Vector purification method had no impact, and all capsids and promoters that we tested resulted in some DRG pathology. The data presented here from five different capsids, five different promoters, and 20 different transgenes suggest that DRG pathology is almost universal after AAV gene therapy in nonclinical studies using NHP. None of the animals receiving a therapeutic transgene displayed any clinical signs. Incorporation of sensitive techniques such as nerve-conduction velocity testing can show alterations in a minority of animals that correlate with the severity of peripheral nerve axonopathy. Monitoring sensory neuropathies in human central nervous system and high-dose IV clinical studies seems prudent to determine the functional consequences of DRG pathology.


Asunto(s)
Dependovirus/genética , Ganglios Espinales/patología , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Conducción Nerviosa , Animales , Femenino , Ganglios Espinales/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Transducción Genética
12.
Oncotarget ; 11(7): 671-686, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32133044

RESUMEN

Purpose: F14512 is an epipodophyllotoxin derivative from etoposide, combined with a spermine moiety introduced as a cell delivery vector. The objective of this study was to compare the safety and antitumor activity of F14512 and etoposide phosphate in dogs with spontaneous non-Hodgkin lymphoma (NHL) and to investigate the potential benefit of F14512 in P-glycoprotein (Pgp) overexpressing lymphomas. Experimental Design: Forty-eight client-owned dogs with intermediate to high-grade NHL were enrolled into a randomized, double-blind trial of F14512 versus etoposide phosphate. Endpoints included safety and therapeutic efficacy. Results: Twenty-five dogs were randomized to receive F14512 and 23 dogs to receive etoposide phosphate. All adverse events (AEs) were reversible, and no treatment-related death was reported. Hematologic AEs were more severe with F14512 and gastrointestinal AEs were more frequent with etoposide phosphate. F14512 exhibited similar response rate and progression-free survival (PFS) as etoposide phosphate in the global treated population. Subgroup analysis of dogs with Pgp-overexpressing NHL showed a significant improvement in PFS in dogs treated with F14512 compared with etoposide phosphate. Conclusion: F14512 showed strong therapeutic efficacy against spontaneous NHL and exhibited a clinical benefice in Pgp-overexpressing lymphoma superior to etoposide phosphate. The results clearly justify the evaluation of F14512 in human clinical trials.

13.
Mol Ther Methods Clin Dev ; 17: 771-784, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32355866

RESUMEN

The identification of the most efficient method for whole central nervous system targeting that is translatable to humans and the safest route of adeno-associated virus (AAV) administration is a major concern for future applications in clinics. Additionally, as many AAV serotypes were identified for gene introduction into the brain and the spinal cord, another key to human gene-therapy success is to determine the most efficient serotype. In this study, we compared lumbar intrathecal administration through catheter implantation and intracerebroventricular administration in the cynomolgus macaque. We also evaluated and compared two AAV serotypes that are currently used in clinical trials: AAV9 and AAVrh10. We demonstrated that AAV9 lumbar intrathecal delivery using a catheter achieved consistent transgene expression in the motor neurons of the spinal cord and in the neurons/glial cells of several brain regions, whereas AAV9 intracerebroventricular delivery led to a consistent transgene expression in the brain. In contrast, AAVrh10 lumbar intrathecal delivery led to rare motor neuron targeting. Finally, we found that AAV9 efficiently targets respiratory and skeletal muscles after injection into the cerebrospinal fluid (CSF), which represents an outstanding new property that can be useful for the treatment of diseases affecting both the central nervous system and muscle.

14.
Hum Gene Ther ; 30(8): 957-966, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31017018

RESUMEN

Many neuropathic diseases cause early, irreversible neurologic deterioration, which warrants therapeutic intervention during the first months of life. In the case of mucopolysaccharidosis type I, a recessive lysosomal storage disorder that results from a deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), one of the most promising treatment approaches is to restore enzyme expression through gene therapy. Specifically, administering pantropic adeno-associated virus (AAV) encoding IDUA into the cerebrospinal fluid (CSF) via suboccipital administration has demonstrated remarkable efficacy in large animals. Preclinical safety studies conducted in adult nonhuman primates supported a positive risk-benefit profile of the procedure while highlighting potential subclinical toxicity to primary sensory neurons located in the dorsal root ganglia (DRG). This study investigated the long-term performance of intrathecal cervical AAV serotype 9 gene transfer of human IDUA administered to 1-month-old rhesus monkeys (N = 4) with half of the animals tolerized to the human transgene at birth via systemic administration of an AAV serotype 8 vector expressing human IDUA from the liver. Sustained expression of the transgene for almost 4 years is reported in all animals. Transduced cells were primarily pyramidal neurons in the cortex and hippocampus, Purkinje cells in the cerebellum, lower motor neurons, and DRG neurons. Both tolerized and non-tolerized animals were robust and maintained transgene expression as measured by immunohistochemical analysis of brain tissue. However, the presence of antibodies in the non-tolerized animals led to a loss of measurable levels of secreted enzyme in the CSF. These results support the safety and efficiency of treating neonatal rhesus monkeys with AAV serotype 9 gene therapy delivered into the CSF.


Asunto(s)
Dependovirus/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Iduronidasa/genética , Transgenes , Animales , Dependovirus/clasificación , Femenino , Ganglios Espinales/metabolismo , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Iduronidasa/metabolismo , Inmunohistoquímica , Inyecciones Espinales , Macaca mulatta , Neuronas/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas , Serogrupo , Distribución Tisular
15.
Hum Gene Ther Methods ; 29(5): 212-219, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30032644

RESUMEN

Intrathecal delivery of adeno-associated virus vectors and other therapeutics are currently being evaluated for the treatment of central nervous system sequelae of lysosomal storage diseases, motor neuron diseases, and neurodegenerative diseases. As products transition from preclinical to clinical studies, a standardized and clinically relevant method of intrathecal delivery is increasingly germane. Here, we describe a method of intrathecal delivery via suboccipital puncture into the cisterna magna under fluoroscopic guidance in nonhuman primates. This procedure is suitable for use in good laboratory practice compliant studies, has an excellent safety profile, and is highly similar to the procedure currently being explored for use in humans.


Asunto(s)
Cisterna Magna/diagnóstico por imagen , Fluoroscopía/métodos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Inyecciones Espinales/métodos , Animales , Cisterna Magna/metabolismo , Dependovirus/genética , Fluoroscopía/normas , Terapia Genética/normas , Inyecciones Espinales/normas , Primates
16.
Mol Ther Methods Clin Dev ; 10: 68-78, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30073178

RESUMEN

Hunter syndrome is an X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase. The severe form of this progressive, systemic, and neurodegenerative disease results in loss of cognitive skills and early death. Several clinical trials are evaluating adeno-associated virus 9 for the treatment of neurodegenerative diseases using systemic or intrathecal lumbar administration. In large animals, administration via suboccipital puncture gives better brain transduction than lumbar administration. Here, we conducted a good laboratory practice-compliant investigational new drug-enabling study to determine the safety of suboccipital adeno-associated virus 9 gene transfer of human iduronate-2-sulfatase into nonhuman primates. Thirteen rhesus macaques received vehicle or one of two doses of vector with or without immunosuppression. We assessed in-life safety and immune responses. Animals were euthanized 90 days post-administration and sampled for histopathology and biodistribution. The procedure was well tolerated in all animals. Minimal mononuclear cerebrospinal fluid pleocytosis occurred in some animals. Asymptomatic minimal-to-moderate toxicity to some dorsal root ganglia sensory neurons and their associated axons occurred in all vector-treated animals. This study supports the clinical development of suboccipital adeno-associated virus 9 delivery for severe Hunter syndrome and highlights a potential toxicity that warrants monitoring in first-in-human studies.

17.
Mol Ther Methods Clin Dev ; 10: 79-88, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30073179

RESUMEN

Mucopolysaccharidosis type I is a recessive genetic disease caused by deficiency of the lysosomal enzyme α-L-iduronidase, which leads to a neurodegenerative and systemic disease called Hurler syndrome in its most severe form. Several clinical trials are evaluating adeno-associated virus serotype 9 (AAV9) for the treatment of neurodegenerative diseases. Although these trials focus on systemic or lumbar administration, intrathecal administration via suboccipital puncture into the cisterna magna has demonstrated remarkable efficacy in large animals. We, therefore, conducted a good laboratory practice-compliant non-clinical study to investigate the safety of suboccipital AAV9 gene transfer of human α-L-iduronidase into nonhuman primates. We dosed 22 rhesus macaques, including three immunosuppressed animals, with vehicle or one of two doses of vector. We assessed in-life safety and immune responses. Animals were euthanized 14, 90, or 180 days post-vector administration and evaluated for histopathology and biodistribution. No procedure-related lesions or adverse events occurred. All vector-treated animals showed a dose-dependent mononuclear pleocytosis in the cerebrospinal fluid and minimal to moderate asymptomatic degeneration of dorsal root ganglia neurons and associated axons. These studies support the clinical development of suboccipital AAV delivery for Hurler syndrome and highlight a potential sensory neuron toxicity that warrants careful monitoring in first-in-human studies.

18.
PLoS One ; 12(5): e0177486, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28505195

RESUMEN

Comparative oncology has shown that naturally occurring canine cancers are of valuable and translatable interest for the understanding of human cancer biology and the characterization of new therapies. This work was part of a comparative oncology project assessing a new, clinical-stage topoisomerase II inhibitor and comparing it with etoposide in dogs with spontaneous lymphoma with the objective to translate findings from dogs to humans. Etoposide is a topoisomerase II inhibitor widely used in various humans' solid and hematopoietic cancer, but little data is available concerning its potential antitumor efficacy in dogs. Etoposide phosphate is a water-soluble prodrug of etoposide which is expected to be better tolerated in dogs. The objectives of this study were to assess the safety, the tolerability and the efficacy of intravenous etoposide phosphate in dogs with multicentric lymphoma. Seven dose levels were evaluated in a traditional 3+3 phase I design. Twenty-seven owned-dogs with high-grade multicentric lymphoma were enrolled and treated with three cycles of etoposide phosphate IV injections every 2 weeks. Adverse effects were graded according to the Veterinary Cooperative Oncology Group criteria. A complete end-staging was realized 45 days after inclusion. The maximal tolerated dose was 300 mg/m2. At this dose level, the overall response rate was 83.3% (n = 6, 3 PR and 2 CR). Only a moderate reversible gastrointestinal toxicity, no severe myelotoxicity and no hypersensitivity reaction were reported at this dose level. Beyond the characterization of etoposide clinical efficacy in dogs, this study underlined the clinical and therapeutic homologies between dog and human lymphomas.


Asunto(s)
Antineoplásicos/administración & dosificación , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/patología , Etopósido/análogos & derivados , Linfoma/veterinaria , Compuestos Organofosforados/administración & dosificación , Administración Intravenosa , Animales , Antineoplásicos/efectos adversos , Enfermedades de los Perros/epidemiología , Perros , Etopósido/administración & dosificación , Etopósido/efectos adversos , Clasificación del Tumor , Estadificación de Neoplasias , Compuestos Organofosforados/efectos adversos , Resultado del Tratamiento , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA