Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396974

RESUMEN

Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Humanos , Anticuerpos Monoclonales , Bacteriófagos/genética , Saccharomyces cerevisiae/metabolismo , Biblioteca de Péptidos , Endotoxinas , Lipopolisacáridos
2.
Eur J Immunol ; 51(1): 191-196, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32648940

RESUMEN

Interleukin-31 (IL-31) is a Th2 cell-derived cytokine that has been closely linked to pruritic skin inflammation. More recently, enhanced IL-31 serum levels have also been observed in patients with allergic rhinitis and allergic asthma. Therefore, the main aim of this study was to unravel the contribution of IL-31 to allergen-induced lung inflammation. We analyzed lung inflammation in response to the timothy grass (Phleum pratense) pollen allergen Phl p 5 in C57BL/6 wild-type (wt) mice, IL-31 transgenic (IL-31tg) mice, and IL-31 receptor alpha-deficient animals (IL-31RA-/- ). IL-31 and IL-31RA levels were monitored by qRT-PCR. Cellular infiltrate in bronchoalveolar lavage fluid (BALF) and lung tissue inflammation, mucus production as well as epithelial thickness were measured by flow cytometry and histomorphology. While allergen challenge induced IL-31RA expression in lung tissue of wt and IL-31tg mice, high IL-31 expression was exclusively observed in lung tissue of IL-31tg mice. Upon Phl p 5 challenge, IL-31tg mice showed reduced numbers of leukocytes and eosinophils in BALF and lung tissue as well as diminished mucin expression and less pronounced epithelial thickening compared to IL-31RA-/- or wt animals. These findings suggest that the IL-31/IL-31RA axis may regulate local, allergen-induced inflammation in the lungs.


Asunto(s)
Alérgenos/efectos adversos , Alérgenos/inmunología , Interleucinas/inmunología , Proteínas de Plantas/efectos adversos , Proteínas de Plantas/inmunología , Neumonía/inmunología , Animales , Asma/etiología , Asma/inmunología , Asma/prevención & control , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Femenino , Interleucinas/genética , Leucocitos/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Phleum/efectos adversos , Phleum/inmunología , Neumonía/etiología , Neumonía/prevención & control , Polen/efectos adversos , Polen/inmunología , Receptores de Interleucina/deficiencia , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología
3.
Bioconjug Chem ; 33(8): 1505-1514, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35852911

RESUMEN

Sodium citrate-stabilized gold nanoparticles (AuNPs) are destabilized when dispersed in cell culture media (CCMs). This may promote their aggregation and subsequent sedimentation, or under the proper conditions, their interaction with dispersed proteins can lead to the formation of a NP-stabilizing protein corona. CCMs are ionic solutions that contain growth substances which are typically supplemented, in addition to serum, with different substances such as dyes, antioxidants, and antibiotics. In this study, the impact of phenol red, penicillin-streptomycin, l-glutamine, and ß-mercaptoethanol on the formation of the NP-protein corona in CCMs was investigated. Similar protein coronas were obtained except in the presence of antibiotics. Under these conditions, the protein corona took more time to be formed, and its density and composition were altered, as indicated by UV-vis spectroscopy, Z potential, dynamic light scattering, and liquid chromatography-mass spectrometry analyses. As a consequence of these modifications, a significantly different AuNP cellular uptake was measured, showing that NP uptake increased as did the NP aggregate formation. AuNP uptake studies performed in the presence of clathrin- and caveolin-mediated endocytosis inhibitors showed that neither clathrin receptors nor lipid rafts were significantly involved in the internalization mechanism. These results suggest that in these conditions, NP aggregation is the main mechanism responsible for their cellular uptake.


Asunto(s)
Nanopartículas del Metal , Corona de Proteínas , Antibacterianos , Técnicas de Cultivo de Célula , Citratos/química , Ácido Cítrico , Clatrina , Oro/química , Nanopartículas del Metal/química , Corona de Proteínas/metabolismo
4.
Allergy ; 76(1): 210-222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32621318

RESUMEN

BACKGROUND: Allergen-specific immunotherapy via the skin targets a tissue rich in antigen-presenting cells, but can be associated with local and systemic side effects. Allergen-polysaccharide neoglycogonjugates increase immunization efficacy by targeting and activating dendritic cells via C-type lectin receptors and reduce side effects. OBJECTIVE: We investigated the immunogenicity, allergenicity, and therapeutic efficacy of laminarin-ovalbumin neoglycoconjugates (LamOVA). METHODS: The biological activity of LamOVA was characterized in vitro using bone marrow-derived dendritic cells. Immunogenicity and therapeutic efficacy were analyzed in BALB/c mice. Epicutaneous immunotherapy (EPIT) was performed using fractional infrared laser ablation to generate micropores in the skin, and the effects of LamOVA on blocking IgG, IgE, cellular composition of BAL, lung, and spleen, lung function, and T-cell polarization were assessed. RESULTS: Conjugation of laminarin to ovalbumin reduced its IgE binding capacity fivefold and increased its immunogenicity threefold in terms of IgG generation. EPIT with LamOVA induced significantly higher IgG levels than OVA, matching the levels induced by s.c. injection of OVA/alum (SCIT). EPIT was equally effective as SCIT in terms of blocking IgG induction and suppression of lung inflammation and airway hyperresponsiveness, but SCIT was associated with higher levels of therapy-induced IgE and TH2 cytokines. EPIT with LamOVA induced significantly lower local skin reactions during therapy compared to unconjugated OVA. CONCLUSION: Conjugation of ovalbumin to laminarin increased its immunogenicity while at the same time reducing local side effects. LamOVA EPIT via laser-generated micropores is safe and equally effective compared to SCIT with alum, without the need for adjuvant.


Asunto(s)
Asma , Neumonía , beta-Glucanos , Alérgenos , Animales , Asma/terapia , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Ovalbúmina
5.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525345

RESUMEN

Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1ß is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.


Asunto(s)
Carcinogénesis/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Leucemia/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Alarminas/genética , Alarminas/inmunología , Animales , Autofagia/genética , Autofagia/inmunología , Carcinogénesis/genética , Carcinogénesis/patología , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Humanos , Inmunidad Innata , Inflamasomas/genética , Inflamación/complicaciones , Inflamación/genética , Inflamación/patología , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leucemia/etiología , Leucemia/genética , Leucemia/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Piroptosis/genética , Piroptosis/inmunología , Transducción de Señal
6.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35008838

RESUMEN

Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3' to P6' was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Exotoxinas/metabolismo , Espectrometría de Masas , Proteolisis , Streptococcus pyogenes/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Escherichia coli/metabolismo , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
7.
Small ; 16(21): e2000598, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32363795

RESUMEN

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Asunto(s)
Inmunidad Innata , Nanoestructuras , Medición de Riesgo , Inmunidad Adaptativa , Animales , Inmunidad Innata/efectos de los fármacos , Nanoestructuras/toxicidad , Medición de Riesgo/métodos
8.
Allergy ; 75(5): 1217-1228, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31880319

RESUMEN

BACKGROUND: Skin-based immunotherapy of type 1 allergies has recently been re-investigated as an alternative for subcutaneous injections. In the current study, we employed a mouse model of house dust mite (HDM)-induced lung inflammation to explore the potential of laser-facilitated epicutaneous allergen-specific treatment. METHODS: Mice were sensitized against native Dermatophagoides pteronyssinus extract and repeatedly treated by application of depigmented D pteronyssinus extract via laser-generated skin micropores or by subcutaneous injection with or without alum. Following aerosol challenges, lung function was determined by whole-body plethysmography and bronchoalveolar lavage fluid was analyzed for cellular composition and cytokine levels. HDM-specific IgG subclass antibodies were determined by ELISA. Serum as well as cell-bound IgE was measured by ELISA, rat basophil leukemia cell assay, and ex vivo using a basophil activation test, respectively. Cultured lymphocytes were analyzed for cytokine secretion profiles and cellular polarization by flow cytometry. RESULTS: Immunization of mice by subcutaneous injection or epicutaneous laser microporation induced comparable IgG antibody levels, but the latter preferentially induced regulatory T cells and in general downregulated T cell cytokine production. This effect was found to be a result of the laser treatment itself, independent from extract application. Epicutaneous treatment of sensitized animals led to induction of blocking IgG, and improvement of lung function, superior compared to the effects of subcutaneous therapy. During the whole therapy schedule, no local or systemic side effects occurred. CONCLUSION: Allergen-specific immunotherapy with depigmented HDM extract via laser-generated skin micropores offers a safe and effective treatment option for HDM-induced allergy and lung inflammation.


Asunto(s)
Alérgenos , Hipersensibilidad , Animales , Antígenos Dermatofagoides , Desensibilización Inmunológica , Hipersensibilidad/terapia , Rayos Láser , Ratones , Pyroglyphidae
9.
Allergy ; 75(2): 412-422, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31444907

RESUMEN

BACKGROUND: Food allergy is associated with a high personal health and economic burden. For immunomodulation toward tolerance, food compounds could be chemically modified, for example, by posttranslational protein nitration, which also occurs via diet-derived nitrating agents in the gastrointestinal tract. OBJECTIVE: We sought to analyze the effect of pretreatment with nitrated food proteins on the immune response in a mouse food allergy model and on human monocyte-derived dendritic cells (moDCs) and PBMCs. METHODS: The model allergen ovalbumin (OVA) was nitrated in different nitration degrees, and the secondary structures of proteins were determined by circular dichroism (CD). Allergy-preventive treatment with OVA, nitrated OVA (nOVA), and maximally nitrated OVA (nOVAmax) were performed before mice were immunized with or without gastric acid-suppression medication. Antibody levels, regulatory T-cell (Treg) numbers, and cytokine levels were evaluated. Human moDCs or PBMCs were incubated with proteins and evaluated for expression of surface markers, cytokine production, and proliferation of Th2 as well as Tregs. RESULTS: In contrast to OVA and nOVA, the conformation of nOVAmax was substantially changed. nOVAmax pretreated mice had decreased IgE as well as IgG1 and IgG2a levels and Treg numbers were significantly elevated, while cytokine levels remained at baseline level. nOVAmax induced a regulatory DC phenotype evidenced by a decrease of the activation marker CD86 and an increase in IL-10 production and was associated with a higher proliferation of memory Tregs. CONCLUSION: Oral pretreatment with highly nitrated proteins induces a tolerogenic immune response in the food allergy model and in human immune cells.


Asunto(s)
Alérgenos/química , Alérgenos/inmunología , Hipersensibilidad a los Alimentos/prevención & control , Inmunización/métodos , Nitrocompuestos/inmunología , Ovalbúmina/química , Ovalbúmina/inmunología , Linfocitos T Reguladores/inmunología , Administración Oral , Alérgenos/administración & dosificación , Animales , Donantes de Sangre , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Femenino , Hipersensibilidad a los Alimentos/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Inmunoglobulina E/metabolismo , Ratones , Ratones Endogámicos BALB C , Nitrocompuestos/administración & dosificación , Ovalbúmina/administración & dosificación , Transducción de Señal/inmunología
10.
Cell Commun Signal ; 18(1): 160, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023610

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) is a gram-negative bacterium that chronically infects approximately 50% of the world's human population. While in most cases the infection remains asymptomatic, 10% of infected individuals develop gastric pathologies and 1-3% progress to gastric cancer. Although H. pylori induces severe inflammatory responses, the host's immune system fails to clear the pathogen and H. pylori can persist in the human stomach for decades. As suppressor of cytokine signaling (SOCS) proteins are important feedback regulators limiting inflammatory responses, we hypothesized that H. pylori could modulate the host's immune responses by inducing SOCS expression. METHODS: The phenotype of human monocyte-derived DCs (moDCs) infected with H. pylori was analyzed by flow cytometry and multiplex technology. SOCS expression levels were monitored by qPCR and signaling studies were conducted by means of Western blot. For functional studies, RNA interference-based silencing of SOCS1-3 and co-cultures with CD4+ T cells were performed. RESULTS: We show that H. pylori positive gastritis patients express significantly higher SOCS3, but not SOCS1 and SOCS2, levels compared to H. pylori negative patients. Moreover, infection of human moDCs with H. pylori rapidly induces SOCS3 expression, which requires the type IV secretion system (T4SS), release of TNFα, and signaling via the MAP kinase p38, but appears to be independent of TLR2, TLR4, MEK1/2 and STAT proteins. Silencing of SOCS3 expression in moDCs prior to H. pylori infection resulted in increased release of both pro- and anti-inflammatory cytokines, upregulation of PD-L1, and decreased T-cell proliferation. CONCLUSIONS: This study shows that H. pylori induces SOCS3 via an autocrine loop involving the T4SS and TNFα and p38 signaling. Moreover, we demonstrate that high levels of SOCS3 in DCs dampen PD-L1 expression on DCs, which in turn drives T-cell proliferation. Video Abstract.


Asunto(s)
Sistemas de Secreción Bacterianos , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Helicobacter pylori/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Antígenos Bacterianos/metabolismo , Antígeno B7-H1/metabolismo , Proteínas Bacterianas/metabolismo , Proliferación Celular , Quimiocinas/metabolismo , Retroalimentación Fisiológica , Infecciones por Helicobacter/metabolismo , Humanos , Quinasas Janus/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Monocitos/metabolismo , Mutación/genética , Fosforilación , Transducción de Señal , Receptores Toll-Like/metabolismo
11.
Int J Mol Sci ; 21(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486097

RESUMEN

Helicobacter pylori (H. pylori) is a stomach pathogen that persistently colonizes the gastric mucosa, often leading to chronic inflammation and gastric pathologies. Although infection with H. pylori is the primary risk factor for gastric cancer, the underlying mechanisms of pathogen persistence and consequential chronic inflammation are still not well understood. Conventional dendritic cells (cDCs), which are among the first immune cells to encounter H. pylori in the gastric lining, and the cytokines and chemokines they secrete, contribute to both acute and chronic inflammation. Therefore, this study aimed to unravel the contributions of specific signaling pathways within human CD1c+ cDCs (cDC2s) to the composition of secreted cytokines and chemokines in H. pylori infection. Here, we show that the type IV secretion system (T4SS) plays only a minor role in H. pylori-induced activation of cDC2s. In contrast, Toll-like receptor 4 (TLR4) signaling drives the secretion of inflammatory mediators, including IL-12 and IL-18, while signaling via TLR10 attenuates the release of IL-1ß and other inflammatory cytokines upon H. pylori infection. The TLR2 pathway significantly blocks the release of CXCL1 and CXCL8, while it promotes the secretion of TNFα and GM-CSF. Taken together, these results highlight how specific TLR-signaling pathways in human cDC2s shape the H. pylori-induced cytokine and chemokine milieu, which plays a pivotal role in the onset of an effective immune response.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Receptor Toll-Like 10/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Antígenos CD1/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori , Humanos , Inflamación , Mediadores de Inflamación/metabolismo , Leucocitos Mononucleares/citología , Transducción de Señal , Neoplasias Gástricas/microbiología
12.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775389

RESUMEN

Dendritic cells (DCs) regulate immunity and inflammation and respond to various stimuli, including cytokines. IL-1ß is a key cytokine in the course of both acute and chronic inflammatory responses, making it indispensable for protection of the host, but also linking it to several diseases. Thus, IL-1ß signaling must be tightly regulated. As suppressor of cytokine signaling (SOCS) proteins effectively control immune responses, we investigated the role of SOCS2 in IL-1ß-induced DC activation. Human monocyte-derived DCs were stimulated with IL-1ß, and SOCS2 mRNA and protein levels were measured. DC activation was assessed by cytokine secretion and surface marker expression. For functional analysis, small interfering RNA (siRNA)-based SOCS2 silencing was performed. SOCS2 expression was also analyzed in a curated NCBI GEO dataset of myeloid leukemia patients. We found IL-1ß to be a potent inducer of SOCS2 expression. By silencing SOCS2, we showed that SOCS2 specifically limits IL-1ß-induced IL-8 secretion. Moreover, our analysis revealed that SOCS2 levels are significantly increased in patients with acute and chronic myeloid leukemia, two hematological malignancies where disease progression is closely linked to IL-1ß. This study identifies SOCS2 as a novel IL-1ß-inducible target gene and points toward a potential role of SOCS2 in IL-1ß-mediated DC activation.


Asunto(s)
Células Dendríticas/inmunología , Interleucina-1beta/farmacología , Activación de Linfocitos/inmunología , Monocitos/inmunología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Humanos , Activación de Linfocitos/efectos de los fármacos , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/genética
13.
J Allergy Clin Immunol ; 137(5): 1525-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26559323

RESUMEN

BACKGROUND: The search for intrinsic factors, which account for a protein's capability to act as an allergen, is ongoing. Fold stability has been identified as a molecular feature that affects processing and presentation, thereby influencing an antigen's immunologic properties. OBJECTIVE: We assessed how changes in fold stability modulate the immunogenicity and sensitization capacity of the major birch pollen allergen Bet v 1. METHODS: By exploiting an exhaustive virtual mutation screening, we generated mutants of the prototype allergen Bet v 1 with enhanced thermal and chemical stability and rigidity. Structural changes were analyzed by means of x-ray crystallography, nuclear magnetic resonance, and molecular dynamics simulations. Stability was monitored by using differential scanning calorimetry, circular dichroism, and Fourier transform infrared spectroscopy. Endolysosomal degradation was simulated in vitro by using the microsomal fraction of JAWS II cells, followed by liquid chromatography coupled to mass spectrometry. Immunologic properties were characterized in vitro by using a human T-cell line specific for the immunodominant epitope of Bet v 1 and in vivo in an adjuvant-free BALB/c mouse model. RESULTS: Fold stabilization of Bet v 1 was pH dependent and resulted in resistance to endosomal degradation at a pH of 5 or greater, affecting presentation of the immunodominant T-cell epitope in vitro. These properties translated in vivo into a strong allergy-promoting TH2-type immune response. Efficient TH2 cell activation required both an increased stability at the pH of the early endosome and efficient degradation at lower pH in the late endosomal/lysosomal compartment. CONCLUSIONS: Our data indicate that differential pH-dependent fold stability along endosomal maturation is an essential protein-inherent determinant of allergenicity.


Asunto(s)
Alérgenos/química , Antígenos de Plantas/química , Alérgenos/genética , Alérgenos/inmunología , Animales , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Endosomas , Femenino , Concentración de Iones de Hidrógeno , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Mutación , Polen/inmunología , Pliegue de Proteína , Estabilidad Proteica
14.
J Biol Chem ; 290(41): 24747-59, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26306032

RESUMEN

Interleukin-31 (IL-31) is a T helper type 2 cell-derived cytokine tightly associated with inflammatory skin disorders. IL-31-induced signaling is mediated by a receptor complex composed of oncostatin M receptor ß and the cytokine-specific receptor subunit IL-31Rα, of which there are several isoforms. The latter can be classified as long or short isoforms with respect to their intracellular domain. At present, the signaling capabilities of the different isoforms remain inchoately understood, and potential mechanisms involved in negative regulation of IL-31Rα signaling have so far not been studied in detail. Here, we show that both the long and short isoforms of IL-31Rα are capable of inducing STAT signaling. However, the presence of a functional JAK-binding box within IL-31Rα is an essential prerequisite for functional IL-31-mediated STAT3 signaling. Moreover, both the long and short isoforms require oncostatin M receptor ß for their activity. We also show that IL-31 induces expression of four suppressor of cytokine signaling family members and provide evidence that SOCS3 acts as a potent feedback inhibitor of IL-31-induced signaling. Taken together, this study identifies crucial requirements for IL-31 signaling and shows its counter-regulation by SOCS3.


Asunto(s)
Retroalimentación Fisiológica , Interleucinas/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Secuencias de Aminoácidos , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Subunidad beta del Receptor de Oncostatina M/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores de Interleucina/química , Receptores de Interleucina/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Tirosina/metabolismo
15.
J Immunol ; 193(2): 645-54, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24943220

RESUMEN

IL-31, a member of the IL-6 protein family, is one of the latest additions to the list of T cell-derived cytokines. Th2 cells are regarded as a main source of IL-31, which is produced in response to stimulation by IL-4. Because the development of Th9 cells also requires IL-4 as a polarizing cytokine, the current study investigates IL-31 production in human Th9 cells compared with Th2 cells. We found that, although Th9 cells were able to release IL-31 during the first weeks of in vitro polarization, no IL-31 was detected in Th9 cultures after a final restimulation in the absence of polarizing cytokines. We further show that TGF-ß, which is required to obtain Th9 cells in vitro, potently inhibits the release of IL-31 from Th2 cells, whereas IL-33, a cytokine associated with Th2-mediated inflammation, synergizes with IL-4 in inducing IL-31 secretion. To analyze the molecular mechanisms underlying the induction of IL-31, EMSAs, reporter gene assays, and small interfering RNA-based silencing experiments were carried out. We show that STAT6 and NF-κB are central players in mediating IL-31 expression induced by IL-4/IL-33. In addition, we identified a novel NF-κB-binding element within the Il31 promoter that mediates the enhancing effects of IL-33 on IL-4/STAT6-induced IL-31 expression in human Th2 cells. Taken together, this study shows that IL-4 is essential for the production of IL-31, whereas TGF-ß significantly suppresses IL-31 expression at the mRNA and protein levels. As a consequence, in vitro polarized Th2 cells, but not Th9 cells, are able to release IL-31.


Asunto(s)
Interleucinas/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT6/metabolismo , Células Th2/metabolismo , Sitios de Unión/genética , Western Blotting , Células Cultivadas , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-33 , Interleucinas/genética , Interleucinas/farmacología , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT6/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Linfocitos T Colaboradores-Inductores/metabolismo , Células Th2/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
16.
Part Fibre Toxicol ; 13: 3, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26772182

RESUMEN

BACKGROUND: Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. METHODS: Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. RESULTS: The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. CONCLUSION: In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Graphical Abstract Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens.


Asunto(s)
Alérgenos/inmunología , Células Epiteliales Alveolares/inmunología , Antígenos Dermatofagoides/inmunología , Antígenos de Plantas/inmunología , Proteínas de Artrópodos/inmunología , Basófilos/inmunología , Cisteína Endopeptidasas/inmunología , Oro/inmunología , Proteínas de Plantas/inmunología , Corona de Proteínas/inmunología , Alérgenos/metabolismo , Células Epiteliales Alveolares/metabolismo , Antígenos Dermatofagoides/metabolismo , Antígenos de Plantas/metabolismo , Proteínas de Artrópodos/metabolismo , Basófilos/metabolismo , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Oro/metabolismo , Humanos , Nanopartículas del Metal , Nanomedicina/métodos , Péptido Hidrolasas/metabolismo , Permeabilidad , Proteínas de Plantas/metabolismo , Unión Proteica , Corona de Proteínas/metabolismo , Uniones Estrechas/inmunología , Uniones Estrechas/metabolismo , Factores de Tiempo
17.
J Biol Chem ; 289(1): 540-51, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24253036

RESUMEN

Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.


Asunto(s)
Antígenos de Plantas/química , Betula/química , Proteínas de Plantas/química , Multimerización de Proteína , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Betula/genética , Betula/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
18.
J Immunol ; 188(11): 5319-26, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22539792

RESUMEN

IL-31 is a T cell-derived cytokine that signals via a heterodimeric receptor composed of IL-31Rα and oncostatin M receptor ß. Although several studies have aimed to investigate IL-31-mediated effects, the biological functions of this cytokine are currently not well understood. IL-31 expression correlates with the expression of IL-4 and IL-13 and is associated with atopic dermatitis in humans, indicating that IL-31 is involved in Th2-mediated skin inflammation. Because dendritic cells are the main activators of Th cell responses, we posed the question of whether dendritic cells express the IL-31R complex and govern immune responses triggered by IL-31. In the current study, we report that primary human CD1c(+) as well as monocyte-derived dendritic cells significantly upregulate the IL-31Rα receptor chain upon stimulation with IFN-γ. EMSAs, chromatin immunoprecipitation assays, and small interfering RNA-based silencing assays revealed that STAT1 is the main transcription factor involved in IFN-γ-dependent IL-31Rα expression. Subsequent IL-31 stimulation resulted in a dose-dependent release of proinflammatory mediators, including TNF-α, IL-6, CXCL8, CCL2, CCL5, and CCL22. Because these cytokines are crucially involved in skin inflammation, we hypothesize that IL-31-specific activation of dendritic cells may be part of a positive feedback loop driving the progression of inflammatory skin diseases.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Mediadores de Inflamación/metabolismo , Interferón gamma/fisiología , Receptores de Interleucina/biosíntesis , Factor de Transcripción STAT1/fisiología , Células Cultivadas , Células Dendríticas/patología , Retroalimentación , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/fisiología , Receptores de Interleucina/genética , Receptores de Interleucina/fisiología , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología
20.
Front Immunol ; 15: 1393819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933263

RESUMEN

Introduction & Objective: Allergic sensitization is an essential step in the development of allergic airway inflammation to birch pollen (BP); however, this process remains to be fully elucidated. Recent scientific advances have highlighted the importance of the allergen context. In this regard, microbial patterns (PAMPs) present on BP have attracted increasing interest. As these PAMPs are recognized by specialized pattern recognition receptors (PRRs), this study aims at investigating the roles of intracellular PRRs and the inflammasome regulator NLRP3. Methods: We established a physiologically relevant intranasal and adjuvant-free sensitization procedure to study BP-induced systemic and local lung inflammation. Results: Strikingly, BP-sensitized Nlrp3-deficient mice showed significantly lower IgE levels, Th2-associated cytokines, cell infiltration into the lung, mucin production and epithelial thickening than their wild-type counterparts, which appears to be independent of inflammasome formation. Intriguingly, bone-marrow chimera revealed that expression of NLRP3 in the hematopoietic system is required to trigger an allergic response. Conclusion: Overall, this study identifies NLRP3 as an important driver of BP-induced allergic immune responses.


Asunto(s)
Administración Intranasal , Alérgenos , Betula , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Polen , Animales , Ratones , Alérgenos/inmunología , Betula/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Inflamasomas/metabolismo , Inflamasomas/inmunología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Extractos Vegetales/farmacología , Polen/inmunología , Masculino , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA