Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357971

RESUMEN

The SWI/SNF chromatin remodeling complex consists of more than ten component proteins that form a large protein complex of >1 MDa. The catalytic proteins Smarca4 or Smarca2 work in concert with the component proteins to form a chromatin platform suitable for transcriptional regulation. However, the mechanism by which each component protein works synergistically with the catalytic proteins remains largely unknown. Here, we report on the function of Smarce1, a component of the SWI/SNF complex, through the phenotypic analysis of homozygous mutant embryonic stem cells (ESCs). Disruption of Smarce1 induced the dissociation of other complex components from the SWI/SNF complex. Histone binding to DNA was loosened in homozygous mutant ESCs, indicating that disruption of Smarce1 decreased nucleosome stability. Sucrose gradient sedimentation analysis suggested that there was an ectopic genomic distribution of the SWI/SNF complex upon disruption of Smarce1, accounting for the misregulation of chromatin conformations. Unstable nucleosomes remained during ESC differentiation, impairing the heterochromatin formation that is characteristic of the differentiation process. These results suggest that Smarce1 guides the SWI/SNF complex to the appropriate genomic regions to generate chromatin structures adequate for transcriptional regulation.


Asunto(s)
Cromatina , Nucleosomas , Nucleosomas/genética , Cromatina/genética , ADN/metabolismo , Mutación/genética , Células Madre Embrionarias/metabolismo
2.
Circulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682338

RESUMEN

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.

3.
Immunity ; 37(2): 302-13, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22795875

RESUMEN

Interferon-γ (IFN-γ) is essential for host defense against intracellular pathogens. Stimulation of innate immune cells by IFN-γ upregulates ∼2,000 effector genes such as immunity-related GTPases including p65 guanylate-binding protein (Gbp) family genes. We show that a cluster of Gbp genes was required for host cellular immunity against the intracellular parasite Toxoplasma gondii. We generated mice deficient for all six Gbp genes located on chromosome 3 (Gbp(chr3)) by targeted chromosome engineering. Mice lacking Gbp(chr3) were highly susceptible to T. gondii infection, resulting in increased parasite burden in immune organs. Furthermore, Gbp(chr3)-deleted macrophages were defective in IFN-γ-mediated suppression of T. gondii intracellular growth and recruitment of IFN-γ-inducible p47 GTPase Irgb6 to the parasitophorous vacuole. In addition, some members of Gbp(chr3) restored the protective response against T. gondii in Gbp(chr3)-deleted cells. Our results suggest that Gbp(chr3) play a pivotal role in anti-T. gondii host defense by controlling IFN-γ-mediated Irgb6-dependent cellular innate immunity.


Asunto(s)
Proteínas de Unión al GTP/inmunología , Inmunidad Innata/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Cromosomas de los Mamíferos/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Inmunidad Celular/inmunología , Interferón gamma/antagonistas & inhibidores , Interferón gamma/metabolismo , Listeria monocytogenes/inmunología , Mediciones Luminiscentes , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Óxido Nítrico/metabolismo , Toxoplasma/metabolismo
4.
Nucleic Acids Res ; 46(10): e63, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554276

RESUMEN

Haploid mouse embryonic stem cells (ESCs), in which a single hit mutation is sufficient to produce loss-of-function phenotypes, have provided a powerful tool for forward genetic screening. This strategy, however, can be hampered by undesired autodiploidization of haploid ESCs. To overcome this obstacle, we designed a new methodology that facilitates enrichment of homozygous mutant ESC clones arising from autodiploidization during haploid gene trap mutagenesis. Haploid mouse ESCs were purified by fluorescence-activated cell sorting to maintain their haploid property and then transfected with the Tol2 transposon-based biallelically polyA-trapping (BPATrap) vector that carries an invertible G418 plus puromycin double selection cassette. G418 plus puromycin double selection enriched biallelic mutant clones that had undergone autodiploidization following a single vector insertion into the haploid genome. Using this method, we successfully generated 222 homozygous mutant ESCs from 2208 clones by excluding heterozygous ESCs and ESCs with multiple vector insertions. This relatively low efficiency of generating homozygous mutant ESCs was partially overcome by cell sorting of haploid ESCs after Tol2 BPATrap transfection. These results demonstrate the feasibility of our approach to provide an efficient platform for mutagenesis of ESCs and functional analysis of the mammalian genome.


Asunto(s)
Homocigoto , Células Madre Embrionarias de Ratones/fisiología , Mutagénesis/genética , Animales , Células Cultivadas , Elementos Transponibles de ADN , Diploidia , Citometría de Flujo , Vectores Genéticos , Gentamicinas/farmacología , Haploidia , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Poli A , Puromicina/farmacología , Reproducibilidad de los Resultados
5.
Genome Res ; 23(9): 1462-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23908384

RESUMEN

Bloom syndrome, an autosomal recessive disorder of the BLM gene, confers predisposition to a broad spectrum of early-onset cancers in multiple tissue types. Loss of genomic integrity is a primary hallmark of such human malignancies, but many studies using disease-affected specimens are limited in that they are retrospective and devoid of an appropriate experimental control. To overcome this, we devised an experimental system to recapitulate the early molecular events in genetically engineered mouse embryonic stem cells, in which cells undergoing loss of heterozygosity (LOH) can be enriched after inducible down-regulation of Blm expression, with or without site-directed DNA double-strand break (DSB) induction. Transient loss of BLM increased the rate of LOH, whose breakpoints were distributed along the chromosome. Combined with site-directed DSB induction, loss of BLM synergistically increased the rate of LOH and concentrated the breakpoints around the targeted chromosomal region. We characterized the LOH events using specifically tailored genomic tools, such as high-resolution array comparative genomic hybridization and high-density single nucleotide polymorphism genotyping, revealing that the combination of BLM suppression and DSB induction enhanced genomic rearrangements, including deletions and insertions, whose breakpoints were clustered in genomic inverted repeats and associated with junctional microhomologies. Our experimental approach successfully uncovered the detailed molecular mechanisms of as-yet-uncharacterized loss of heterozygosities and reveals the significant contribution of microhomology-mediated genomic rearrangements, which could be widely applicable to the early steps of cancer formation in general.


Asunto(s)
Síndrome de Bloom/genética , Inestabilidad Genómica , Recombinación Homóloga , RecQ Helicasas/genética , Animales , Línea Celular , Aberraciones Cromosómicas , Puntos de Rotura del Cromosoma , Roturas del ADN de Doble Cadena , Regulación hacia Abajo , Células Madre Embrionarias/metabolismo , Conversión Génica , Heterocigoto , Ratones , Polimorfismo de Nucleótido Simple , RecQ Helicasas/metabolismo
6.
FASEB J ; 28(2): 871-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24221084

RESUMEN

Although the roles of acids in bone metabolism are well characterized, the function of proton-sensing receptors in bone metabolism remains to be explored. In this study, we evaluated the role of proton-sensing receptor T-cell death-associated gene 8 (TDAG8) in osteoclastic activity during bone loss after ovariectomy. Through observations of bone mineral content, we found that pathological bone resorption was significantly exacerbated in mice homozygous for a gene trap mutation in the Tdag8 gene. Furthermore, osteoclasts from the homozygous mutant mice resorbed calcium in vitro more than the osteoclasts from the heterozygous mice did. Impaired osteoclast formation under acidic conditions was ameliorated in cultures of bone marrow cells by Tdag8 gene mutation. Extracellular acidification changed the cell morphology of osteoclasts via the TDAG8-Rho signaling pathway. These results suggest that the enhancement of TDAG8 function represents a new strategy for preventing bone resorption diseases, such as osteoporosis.


Asunto(s)
Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Animales , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Confocal , Ovariectomía , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Biol Chem ; 288(14): 10176-10187, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23426372

RESUMEN

Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb(-/-)). Rheb(-/-) mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb(-/-) was lower than that in the control (Rheb(+/+)) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb(+/+) mice but not in Rheb(-/-) mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb(-/-) hearts during the neonatal period. Rheb(-/-) hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb(-/-) hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb(-/-) mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Serina-Treonina Quinasas TOR/química , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Recién Nacidos , Autofagia , Southern Blotting , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular , Cromosomas Artificiales Bacterianos , Ecocardiografía/métodos , Factores Eucarióticos de Iniciación , Corazón/fisiología , Hipertrofia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Modelos Genéticos , Células Musculares/citología , Miocardio/metabolismo , Fosfoproteínas/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Factores de Tiempo
8.
BMC Genomics ; 15: 1016, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25418962

RESUMEN

BACKGROUND: Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. RESULTS: By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. CONCLUSIONS: Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of mutants is available.


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Haploidia , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Animales , Simulación por Computador , Células Madre Embrionarias/metabolismo , Etilnitrosourea/farmacología , Genoma , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Mutagénesis/genética , Mutación/genética , Fenotipo
9.
Am J Hum Genet ; 88(1): 30-41, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21194678

RESUMEN

Microphthalmia with limb anomalies (MLA) is a rare autosomal-recessive disorder, presenting with anophthalmia or microphthalmia and hand and/or foot malformation. We mapped the MLA locus to 14q24 and successfully identified three homozygous (one nonsense and two splice site) mutations in the SPARC (secreted protein acidic and rich in cysteine)-related modular calcium binding 1 (SMOC1) in three families. Smoc1 is expressed in the developing optic stalk, ventral optic cup, and limbs of mouse embryos. Smoc1 null mice recapitulated MLA phenotypes, including aplasia or hypoplasia of optic nerves, hypoplastic fibula and bowed tibia, and syndactyly in limbs. A thinned and irregular ganglion cell layer and atrophy of the anteroventral part of the retina were also observed. Soft tissue syndactyly, resulting from inhibited apoptosis, was related to disturbed expression of genes involved in BMP signaling in the interdigital mesenchyme. Our findings indicate that SMOC1/Smoc1 is essential for ocular and limb development in both humans and mice.


Asunto(s)
Deformidades Congénitas de las Extremidades/genética , Microftalmía/genética , Osteonectina/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Humanos Par 14/genética , Codón sin Sentido/genética , Extremidades/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Genes Recesivos , Sitios Genéticos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Nervio Óptico/anomalías , Empalme del ARN/genética , Síndrome de Waardenburg/genética
10.
Nat Methods ; 8(12): 1071-7, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020066

RESUMEN

Genome-wide mutagenesis in mouse embryonic stem cells (ESCs) is a powerful tool, but the diploid nature of the mammalian genome hampers its application for recessive genetic screening. We have previously reported a method to induce homozygous mutant ESCs from heterozygous mutants by tetracycline-dependent transient disruption of the Bloom's syndrome gene. However, we could not purify homozygous mutants from a large population of heterozygous mutant cells, limiting the applications. Here we developed a strategy for rapid enrichment of homozygous mutant mouse ESCs and demonstrated its feasibility for cell-based phenotypic analysis. The method uses G418-plus-puromycin double selection to enrich for homozygotes and single-nucleotide polymorphism analysis for identification of homozygosity. We combined this simple approach with gene-trap mutagenesis to construct a homozygous mutant ESC bank with 138 mutant lines and demonstrate its use in phenotype-driven genetic screening.


Asunto(s)
Bancos de Muestras Biológicas , Células Madre Embrionarias/metabolismo , Homocigoto , Mutación/genética , Bancos de Tejidos , Animales , Células Madre Embrionarias/citología , Genómica , Gentamicinas/farmacología , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas/genética , Puromicina/farmacología , Proteínas de Unión al ARN
11.
Proc Natl Acad Sci U S A ; 108(29): 11971-6, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730139

RESUMEN

Genomic integrity often is compromised in tumor cells, as illustrated by genetic alterations leading to loss of heterozygosity (LOH). One mechanism of LOH is mitotic crossover recombination between homologous chromosomes, potentially initiated by a double-strand break (DSB). To examine LOH associated with DSB-induced interhomolog recombination, we analyzed recombination events using a reporter in mouse embryonic stem cells derived from F1 hybrid embryos. In this study, we were able to identify LOH events although they occur only rarely in wild-type cells (≤2.5%). The low frequency of LOH during interhomolog recombination suggests that crossing over is rare in wild-type cells. Candidate factors that may suppress crossovers include the RecQ helicase deficient in Bloom syndrome cells (BLM), which is part of a complex that dissolves recombination intermediates. We analyzed interhomolog recombination in BLM-deficient cells and found that, although interhomolog recombination is slightly decreased in the absence of BLM, LOH is increased by fivefold or more, implying significantly increased interhomolog crossing over. These events frequently are associated with a second homologous recombination event, which may be related to the mitotic bivalent structure and/or the cell-cycle stage at which the initiating DSB occurs.


Asunto(s)
Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Conversión Génica/genética , Pérdida de Heterocigocidad/genética , RecQ Helicasas/genética , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Intercambio Genético/genética , Análisis Citogenético , Cartilla de ADN/genética , Electroporación , Vectores Genéticos/genética , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
12.
J Thromb Haemost ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950780

RESUMEN

BACKGROUND: ; Factor (F)V is pivotal in both procoagulant and anticoagulant mechanisms. The present report describes a novel F5 mutation in a FV-deficient patient (FV:C 6 IU/dL, FV:Ag 32 IU/dL), complicated with recurrent deep vein thrombosis. The patient demonstrated activated protein C resistance (APCR) with compound heterozygous mutations consisting of FV-Y1961C (FVKanazawa) and FV-1982_1983del. AIM;: To clarify thrombotic mechanisms associated with this FV abnormality. METHODS AND RESULTS: Levels of FV-1982_1983del were below the detection sensitivity in our expression experiments using HEK293T cells, and analyses were targeted, therefore on the FV-Y1961C mutation. APTT-based clotting assays demonstrated that FV-Y1961C exhibited APCR, and that the reduced APC susceptibility in FVa-Y1961C resulted in a marked depression of APC-catalyzed inactivation with delayed cleavage at Arg506 and little cleavage at Arg306 with or without protein (P)S. The APC cofactor activity of FV-Y1961C in APC-catalyzed FVIIIa inactivation promoted by Arg336 cleavage in FVIII was impaired. The binding affinity of FVa-Y1961C to phospholipid membranes was reduced in reactions involving APC/PS-catalyzed inactivation and in prothrombinase activity. Furthermore, the addition of FVa-Y1961C to plasma failed to inhibit tissue factor (TF)-induced procoagulant function. These characteristics were similar to those of FV-W1920R (FVNara) and FV-A2086D (FVBesançon). CONCLUSIONS: ; We identified a compound heterozygous. FV-Y1961C mutation in the C1 domain representing a novel FV mutation (FVKanazawa) resulting in not only APCR due to impaired FVa susceptibility and FV cofactor activity for APC function, but impaired inhibition of TF-induced procoagulant function. These defects in anticoagulant function associated with FV in FV-Y1961C contributed to a prothrombotic state.

13.
Macromol Biosci ; 24(2): e2300307, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37774391

RESUMEN

Cell therapy using endothelial cells (ECs) has great potential for the treatment of congenital disorders, such as hemophilia A. Cell sheet technology utilizing a thermoresponsive culture dish is a promising approach to efficiently transplant donor cells. In this study, a new method to prepare terminus-selective heparin-immobilized thermoresponsive culture surfaces is developed to facilitate the preparation of EC sheets. Alkynes are introduced to the reducing terminus of heparin via reductive amination. Cu-catalyzed azide-alkyne cycloaddition (CuAAC) facilitates efficient immobilization of the terminus of heparin on a thermoresponsive surface, resulting in a higher amount of immobilized heparin while preserving its function. Heparin-immobilized thermoresponsive surfaces prepared using CuAAC exhibit good adhesion to human endothelial colony-forming cells (ECFCs). In addition, upon further binding to basic fibroblast growth factor (bFGF) on heparin-immobilized surfaces, increased proliferation of ECFCs on the surface is observed. The confluent ECFC monolayer cultured on bFGF-bound heparin-immobilized thermoresponsive surfaces exhibits relatively high fibronectin accumulation and cell number and detaches at 22 °C while maintaining the sheet-like structure. Because heparin has an affinity for several types of bioactive molecules, the proposed method can be applied to facilitate efficient cultures and sheet formations of various cell types.


Asunto(s)
Células Endoteliales , Factor 2 de Crecimiento de Fibroblastos , Humanos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Heparina/química , Química Clic
14.
Nat Commun ; 15(1): 5090, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918373

RESUMEN

The development of haematopoiesis involves the coordinated action of numerous genes, some of which are implicated in haematological malignancies. However, the biological function of many genes remains elusive and unknown functional genes are likely to remain to be uncovered. Here, we report a previously uncharacterised gene in haematopoiesis, identified by screening mutant embryonic stem cells. The gene, 'attenuated haematopoietic development (Ahed)', encodes a nuclear protein. Conditional knockout (cKO) of Ahed results in anaemia from embryonic day 14.5 onward, leading to prenatal demise. Transplantation experiments demonstrate the incapacity of Ahed-deficient haematopoietic cells to reconstitute haematopoiesis in vivo. Employing a tamoxifen-inducible cKO model, we further reveal that Ahed deletion impairs the intrinsic capacity of haematopoietic cells in adult mice. Ahed deletion affects various pathways, and published databases present cancer patients with somatic mutations in Ahed. Collectively, our findings underscore the fundamental roles of Ahed in lifelong haematopoiesis, implicating its association with malignancies.


Asunto(s)
Hematopoyesis , Ratones Noqueados , Animales , Hematopoyesis/genética , Ratones , Humanos , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones Endogámicos C57BL , Mutación , Anemia/genética , Masculino , Células Madre Embrionarias/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(8): 3846-51, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133594

RESUMEN

The molecular oscillations underlying the generation of circadian rhythmicity in mammals develop gradually during ontogenesis. However, the developmental process of mammalian cellular circadian oscillator formation remains unknown. In differentiated somatic cells, the transcriptional-translational feedback loops (TTFL) consisting of clock genes elicit the molecular circadian oscillation. Using a bioluminescence imaging system to monitor clock gene expression, we show here that the circadian bioluminescence rhythm is not detected in the mouse embryonic stem (ES) cells, and that the ES cells likely lack TTFL regulation for clock gene expression. The circadian clock oscillation was induced during the differentiation culture of mouse ES cells without maternal factors. In addition, reprogramming of the differentiated cells by expression of Sox2, Klf4, Oct3/4, and c-Myc genes, which were factors to generate induced pluripotent stem (iPS) cells, resulted in the re-disappearance of circadian oscillation. These results demonstrate that an intrinsic program controls the formation of the circadian oscillator during the differentiation process of ES cells in vitro. The cellular differentiation and reprogramming system using cultured ES cells allows us to observe the circadian clock formation process and may help design new strategies to understand the key mechanisms responsible for the organization of the molecular oscillator in mammals.


Asunto(s)
Diferenciación Celular , Ritmo Circadiano , Células Madre Embrionarias/fisiología , Neuronas/fisiología , Animales , Relojes Biológicos/genética , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Luminiscencia , Ratones , Neuronas/citología , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo , Tretinoina/farmacología
16.
Sci Rep ; 13(1): 11652, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468545

RESUMEN

CRISPR genome editing is a powerful tool for elucidating biological functions. To modify the genome as intended, it is essential to understand the various modes of recombination that can occur. In this study, we report complex vector insertions that were identified during the generation of conditional alleles by CRISPR editing using microhomology-mediated end joining (MMEJ). The targeting vector contained two loxP sequences and flanking 40-bp microhomologies. The genomic regions corresponding to the loxP sequences were cleaved with Cas9 in mouse embryonic stem cells. PCR screening for targeted recombination revealed a high frequency of bands of a larger size than expected. Nanopore sequencing of these bands revealed complex vector insertions mediated not only by MMEJ but also by non-homologous end joining and homologous recombination in at least 17% of the clones. A new band appeared upon improving the PCR conditions, suggesting the presence of unintentionally modified alleles that escape standard PCR screening. This prompted us to characterize the recombination of each allele of the genome-edited clones using heterozygous single nucleotide polymorphisms, leading to confirmation of the presence of homozygous alleles. Our study indicates that careful quality control of genome-edited clones is needed to exclude complex, unintended, on-target vector insertion.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Reparación del ADN por Unión de Extremidades , Alelos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia
17.
DNA Res ; 30(1)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448318

RESUMEN

The genome contains large functional units ranging in size from hundreds of kilobases to megabases, such as gene clusters and topologically associating domains. To analyse these large functional units, the technique of deleting the entire functional unit is effective. However, deletion of such large regions is less efficient than conventional genome editing, especially in cultured cells, and a method that can ensure success is anticipated. Here, we compared methods to delete the 2.5-Mb Krüppel-associated box zinc finger protein (KRAB-ZFP) gene cluster in mouse embryonic stem cells using CRISPR-Cas9. Three methods were used: first, deletion by non-homologous end joining (NHEJ); second, homology-directed repair (HDR) using a single-stranded oligodeoxynucleotide (ssODN); and third, HDR employing targeting vectors with a selectable marker and 1-kb homology arms. NHEJ-mediated deletion was achieved in 9% of the transfected cells. Inversion was also detected at similar efficiency. The deletion frequency of NHEJ and HDR was found to be comparable when the ssODN was transfected. Deletion frequency was highest when targeting vectors were introduced, with deletions occurring in 31-63% of the drug-resistant clones. Biallelic deletion was observed when targeting vectors were used. This study will serve as a benchmark for the introduction of large deletions into the genome.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias de Ratones , Animales , Ratones , Edición Génica/métodos , Genoma , Reparación del ADN por Recombinación , Reparación del ADN por Unión de Extremidades
18.
Blood Adv ; 7(12): 2831-2842, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36780344

RESUMEN

Factor V (FV) plays pivotal roles in both procoagulant and anticoagulant mechanisms. Genetic mutations, FV-W1920R (FVNara) and FV-A2086D (FVBesançon), in the C1 and C2 domains of FV light chain, respectively, seem to be associated with deep vein thrombosis. However, the detailed mechanism(s) through which these mutations are linked to thrombophilia remains to be fully explored. The aim of this study was to clarify thrombotic mechanism(s) in the presence of these FV abnormalities. Full-length wild-type (WT) and mutated FV were prepared using stable, human cell lines (HEK293T) and the piggyBac transposon system. Susceptibility of FVa-A2086D to activated protein C (APC) was reduced, resulting in significant inhibition of APC-catalyzed inactivation with limited cleavage at Arg306 and delayed cleavage at Arg506. Furthermore, APC cofactor activity of FV-A2086D in APC-catalyzed inactivation of FVIIIa through cleavage at Arg336 was impaired. Surface plasmon resonance-based assays demonstrated that FV-A2086D bound to Glu-Gly-Arg-chloromethylketone active site-blocked APC and protein S (P) with similar affinities to that of FV-WT. However, weakened interaction between FVa-A2086D and phospholipid membranes was evident through the prothrombinase assay. Moreover, addition of FVa-A2086D to plasma failed to inhibit tissue factor (TF)-induced thrombin generation and reduce prothrombin times. This inhibitory effect was independent of PC, PS, and antithrombin. The coagulant and anticoagulant characteristics of FV(a)-W1920R were similar to those of FV(a)-A2086D. FV-A2086D presented defects in the APC mechanisms associated with FVa inactivation and FV cofactor activity, similar to FV-W1920R. Moreover, both FV proteins that were mutated in the light chain impaired inhibition of TF-induced coagulation reactions. These defects were consistent with congenital thrombophilia.


Asunto(s)
Trombofilia , Trombosis de la Vena , Humanos , Factor V/genética , Factor V/metabolismo , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Células HEK293 , Mutación , Tromboplastina/metabolismo , Trombosis de la Vena/genética
19.
Int J Hematol ; 117(1): 56-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36229740

RESUMEN

Human blood coagulation factor VIII (hFVIII) is used in hemostatic and prophylactic treatment of patients with hemophilia A. Biotechnological innovations have enabled purification of the culture medium of rodent or human cells harboring the hFVIII expression cassette. However, cell lines express hFVIII protein derived from an exogenous expression vector at a lower level than most other proteins. Here, we describe hFVIII production using piggyBac transposon and the human-derived expi293F cell line. Use of a drug selection protocol, rather than transient expression protocol, allowed cells harboring hFVIII expression cassettes to efficiently produce hFVIII. In heterogeneous drug-selected cells, the production level was maintained even after multiple passages. The specific activity of the produced hFVIII was comparable to that of the commercial product and hFVIII derived from baby hamster kidney cells. We also applied codon optimization to the hFVIII open reading frame sequences in the transgene, which increased production of full-length hFVIII, but decreased production of B-domain-deleted human FVIII (BDD-hFVIII). Low transcriptional abundance of the hF8 transgene was observed in cells harboring codon-optimized BDD-hFVIII expression cassettes, which might partially contribute to decreased hFVIII production. The mechanism underlying these distinct outcomes may offer clues to highly efficient hFVIII protein production.


Asunto(s)
Técnicas de Cultivo de Célula , Factor VIII , Terapia Genética , Hemofilia A , Animales , Cricetinae , Humanos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Codón , Factor VIII/biosíntesis , Terapia Genética/métodos , Vectores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia
20.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36692963

RESUMEN

Most circulating endothelial cells are apoptotic, but rare circulating endothelial colony-forming cells (C-ECFCs), also known as blood outgrowth endothelial cells, with proliferative and vasculogenic activity can be cultured; however, the origin and naive function of these C-ECFCs remains obscure. Herein, detailed lineage tracing revealed murine C-ECFCs emerged in the early postnatal period, displayed high vasculogenic potential with enriched frequency of clonal proliferative cells compared with tissue-resident ECFCs, and were not committed to or derived from the BM hematopoietic system but from tissue-resident ECFCs. In humans, C-ECFCs were present in the CD34bright cord blood mononuclear subset, possessed proliferative potential and in vivo vasculogenic function in a naive or cultured state, and displayed a single cell transcriptome sharing some umbilical venous endothelial cell features, such as a higher protein C receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naive function, and antigens to prospectively isolate C-ECFCs for translational studies.


Asunto(s)
Células Endoteliales , Matriz Extracelular , Humanos , Animales , Ratones , Estudios Prospectivos , Células Clonales , Receptor de Proteína C Endotelial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA