Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microsc Microanal ; 16(6): 821-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20961482

RESUMEN

Quantitative X-ray microanalysis of thick samples is usually performed by measuring the characteristic X-ray intensities of each element in a sample and in corresponding standards. The ratio of the measured intensities from the unknown material to that from the standard is related to the concentration using the ZAF or ϕ(ρz) equations. Under optimal conditions, accuracies approaching 1% are possible. However, all the experimental conditions must remain the same during the sample and standard measurements. This is not possible with cold field emission scanning electron microscopes (FE-SEMs) where beam current can fluctuate around 5% in its stable regime. Very little work has been done on variable beam current conditions (Griffin, B.J. & Nockolds, C.E., Scanning 13, 307-312, 1991), and none relating to cold FE-SEM applications. To address this issue, a new method was developed using a single spectral measurement. It is similar in approach to the Cliff-Lorimer method developed for the analytical transmission electron microscope. However, corrections are made for X rays generated from thick specimens using the ratio of the characteristic X-ray intensities of two elements in the same material. The proposed method utilizes the ratio of the intensity of a characteristic X-ray normalized by the sum of X-ray intensities of all the elements measured for the sample, which should also reduce the amplitude of error propagation. Uncertainties in the physical parameters of X-ray generation are corrected using a calibration factor that must be previously acquired or calculated. As an example, when this method was applied to the calculation of the composition of Au-Cu National Institute of Standards and Technology standards measured with a cold field emission source SEM, relative accuracies better than 5% were obtained.

2.
Langmuir ; 24(15): 7897-905, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18616223

RESUMEN

Fluoropolymer plasma coatings have been investigated for application as stent coatings due to their chemical stability, conformability, and hydrophobic properties. The challenge resides in the capacity for these coatings to remain adherent, stable, and cohesive after the in vivo stent expansion, which can generate local plastic deformation of up to 25%. Plasma-coated samples have been prepared by a multistep process on 316L stainless steel substrates, and some coated samples were plastically deformed to mimic a stent expansion. Analyses were then performed by X-ray photoelectron spectroscopy (XPS), X-ray photoelectron emission microscopy (X-PEEM), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to determine the chemical and physical effects of such a deformation on both the coating and the interfacial region. While XPS analyses always showed a continuous coating with no significant effect of the deformation, TOF-SIMS and near-edge X-ray absorption fine structure (derived from X-PEEM) data indicated the presence of a certain density of porosity and pinholes in all coatings as well as sparse fissures and molecular fragmentation in the deformed ones. The smallness of the area fraction affected by the defects and the subtlety of the chemical changes could only be evidenced through the higher chemical sensitivity of these latter techniques.


Asunto(s)
Compuestos de Flúor/química , Microscopía Electrónica/métodos , Polímeros/química , Espectrometría de Masa de Ion Secundario/métodos , Stents , Rayos X , Absorción , Factores de Tiempo
3.
Microsc Microanal ; 12(1): 49-64, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17481341

RESUMEN

A new Monte Carlo program, Win X-ray, is presented that predicts X-ray spectra measured with an energy dispersive spectrometer (EDS) attached to a scanning electron microscope (SEM) operating between 10 and 40 keV. All the underlying equations of the Monte Carlo simulation model are included. By simulating X-ray spectra, it is possible to establish the optimum conditions to perform a specific analysis as well as establish detection limits or explore possible peak overlaps. Examples of simulations are also presented to demonstrate the utility of this new program. Although this article concentrates on the simulation of spectra obtained from what are considered conventional thick samples routinely explored by conventional microanalysis techniques, its real power will be in future refinements to address the analysis of sample classifications that include rough surfaces, fine structures, thin films, and inclined surfaces because many of these can be best characterized by Monte Carlo methods. The first step, however, is to develop, refine, and validate a viable Monte Carlo program for simulating spectra from conventional samples.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Tomografía Computarizada por Rayos X/métodos , Aleaciones , Simulación por Computador , Conformación Molecular , Método de Montecarlo , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA