Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 107(1): 100-108, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27552325

RESUMEN

Pyrenophora teres f. maculata, the causal agent of spot form of net blotch (SFNB), is an emerging pathogen of barley in the United States and Australia. Compared with net form of net blotch (NFNB), less is known in the U.S. Upper Midwest barley breeding programs about host resistance and quantitative trait loci (QTL) associated with SFNB in breeding lines. The main objective of this study was to identify QTL associated with SFNB resistance in the Upper Midwest two-rowed and six-rowed barley breeding programs using a genome-wide association study approach. A total of 376 breeding lines of barley were evaluated for SFNB resistance at the seedling stage in the greenhouse in Fargo in 2009. The lines were genotyped with 3,072 single nucleotide polymorphism (SNP) markers. Phenotypic evaluation showed a wide range of variability among populations from the four breeding programs and the two barley-row types. The two-rowed barley lines were more susceptible to SFNB than the six-rowed lines. Continuous distributions of SFNB severity indicate the quantitative nature of SFNB resistance. The mixed linear model (MLM) analysis, which included both population structure and kinship matrices, was used to identify significant SNP-SFNB associations. Principal component analysis was used to control false marker-trait association. The linkage disequilibrium (LD) estimates varied among chromosomes (10 to 20 cM). The MLM analysis identified 10 potential QTL in barley: SFNB-2H-8-10, SFNB-2H-38.03, SFNB-3H-58.64, SFNB-3H-78.53, SFNB-3H-91.88, SFNB-3H-117.1, SFNB-5H-155.3, SFNB-6H-5.4, SFNB-6H-33.74, and SFNB-7H-34.82. Among them, four QTL (SFNB-2H-8-10, SFNB-2H-38.03 SFNB-3H-78.53, and SFNB-3H-117.1) have not previously been published. Identification of SFNB resistant lines and QTL associated with SFNB resistance in this study will be useful in the development of barley genotypes with better SFNB resistance.


Asunto(s)
Ascomicetos/fisiología , Estudio de Asociación del Genoma Completo , Hordeum/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Cruzamiento , Mapeo Cromosómico , Resistencia a la Enfermedad , Genotipo , Hordeum/inmunología , Hordeum/microbiología , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/microbiología , Plantones/genética , Plantones/inmunología , Plantones/microbiología
2.
Genome ; 53(2): 111-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20140029

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein.) Petch), is one of the major diseases of barley (Hordeum vulgare L.) in eastern China, the Upper Midwest of the USA, and the eastern Prairie Provinces of Canada. To identify quantitative trait loci (QTL) controlling FHB resistance, a recombinant inbred line population (F6:7) was developed from the cross Zhenongda 7/PI 643302. The population was phenotyped for resistance to FHB in two experiments in China and four experiments in North Dakota. Accumulation of the mycotoxin deoxynivalenol was determined in one experiment in China and two in North Dakota. Simplified composite interval mapping was performed on the whole genome level using the software MQTL. The QTL FHB-2 from PI 643302 for FHB resistance was found on the distal portion of chromosome 2HL in all six FHB screening environments. This QTL accounted for 14% of phenotypic variation over six environments and was not associated with heading date or plant height. The FHB resistance QTL FHB-2 detected near the end of chromosome 2HL is in a different location from those found previously and is therefore probably unique. Because the QTL was not contributed by the Chinese cultivar Zhenongda 7, it is likely a native QTL present in North American barley. The QTL FHB-2 represents the first reported QTL for native FHB resistance in North American germ plasm and has been given the provisional name Qrgz-2H-14. This QTL should be considered for pyramiding with other FHB QTL previously mapped.


Asunto(s)
Fusarium/genética , Hordeum/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , América del Norte , Fenotipo
3.
Genome ; 53(8): 630-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20725150

RESUMEN

Septoria speckled leaf blotch (SSLB), caused by Septoria passerinii, is one of the most important foliar diseases of barley (Hordeum vulgare L.) in North America. The primary problem caused by this disease is substantial yield loss. The objective of this study was to determine the chromosomal location of SSLB resistance genes in the barley accession PI 643302. A recombinant inbred line population was developed from the cross Zhenongda 7/PI 643302. PI 643302 is resistant while Zhenongda 7 is susceptible to SSLB. The population was phenotyped for SSLB resistance in five experiments in the greenhouse. A linkage map comprising 113 molecular markers was constructed and simplified composite interval mapping was performed. Two QTLs, designated QrSp-1H and QrSP-2H, were found. QrSp-1H was found on the short arm of chromosome 1H (1HS) in all five experiments and showed a large effect against SSLB. Based on the location of QrSp-1H, it is likely the SSLB resistance gene Rsp2. The QTL QrSp-2H mapped to the distal region on the long arm of chromosome 2H (2HL), had a smaller effect than QrSp-1H, and was also detected consistently in all five experiments. A QTL for SSLB resistance in the same region on chromosome 2H has not been reported previously in either cultivated or wild barley; thus, QrSp-2H is a new QTL for SSLB resistance in barley.


Asunto(s)
Mapeo Cromosómico/métodos , Hordeum/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Ascomicetos/inmunología , Predisposición Genética a la Enfermedad , Genoma de Planta , Hordeum/inmunología , Escala de Lod , Fenotipo , Enfermedades de las Plantas/genética
4.
Theor Appl Genet ; 108(1): 95-104, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14556050

RESUMEN

Fusarium head blight (FHB) in barley and wheat, caused by Fusarium graminearum, is a continual problem worldwide. Primarily, FHB reduces yield and quality, and results in the production of the toxin deoxynivalenol (DON), which can affect food safety. Identification of QTLs for FHB severity, DON level and related traits heading-date (HD) and plant-height (HT) with consistent effects across a set of environments, would provide the basis for marker-assisted selection (MAS) and potentially increase the efficiency of selection for resistance. A segregating population of 75 double-haploid lines, developed from the three-way cross Zhedar 2/ND9712//Foster, was used for genome mapping and FHB severity evaluation. A linkage map of 214 RFLP, SSR and AFLP markers was constructed. Phenotypic data were collected in replicated field trials from five environments in two growing seasons. The data were analyzed using MQTL software to detect quantitative trait locus (QTL) x environment (E) interactions. Because of the presence of QTL x E, the MQM procedure in MAPQTL was applied to identify QTLs in single environments. We identified nine QTLs for FHB severity and five for low DON. Many of the disease-related QTLs identified were coincident with FHB QTLs identified in previous studies. Only two of the QTLs identified in this study were consistent across all five environments, and both were Zhedar 2 specific. Five of the FHB QTLs were associated with HD, and two were associated with HT. Regions that appear to be promising candidates for MAS and further genetic analysis include the two FHB QTLs on chromosome 2H and one on 6H, which were also associated with low DON and later heading-date in multiple environments. This study provides a starting point for manipulating Zhedar 2-derived resistance by MAS in barley to develop cultivars that will show effective resistance under disease pressure.


Asunto(s)
Fusarium , Hordeum/genética , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Segregación Cromosómica , Cruzamientos Genéticos , ADN de Plantas/genética , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Hordeum/microbiología , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA