Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mult Scler ; 29(6): 702-718, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36550626

RESUMEN

BACKGROUND: Spinal cord (SC) gray and white matter pathology plays a central role in multiple sclerosis (MS). OBJECTIVE: We aimed to investigate the extent, pattern, and clinical relevance of SC gray and white matter atrophy in vivo. METHODS: 39 relapsing-remitting patients (RRMS), 40 progressive MS patients (PMS), and 24 healthy controls (HC) were imaged at 3T using the averaged magnetization inversion recovery acquisitions sequence. Total and lesional cervical gray and white matter, and posterior (SCPH) and anterior horn (SCAH) areas were automatically quantified. Clinical assessment included the expanded disability status scale, timed 25-foot walk test, nine-hole peg test, and the 12-item MS walking scale. RESULTS: PMS patients had significantly reduced cervical SCAH - but not SCPH - areas compared with HC and RRMS (both p < 0.001). In RRMS and PMS, the cervical SCAH areas increased significantly less in the region of cervical SC enlargement compared with HC (all p < 0.001). This reduction was more pronounced in PMS compared with RRMS (both p < 0.001). In PMS, a lower cervical SCAH area was the most important magnetic resonance imaging (MRI)-variable for higher disability scores. CONCLUSION: MS patients show clinically relevant cervical SCAH atrophy, which is more pronounced in PMS and at the level of cervical SC enlargement.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Esclerosis Múltiple/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Sustancia Gris/patología , Imagen por Resonancia Magnética , Atrofia/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología
2.
Mult Scler Relat Disord ; 71: 104545, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758461

RESUMEN

BACKGROUND: Although cervical spinal cord (cSC) area is an established biomarker in MS, there is currently a lack of longitudinal assessments of cSC gray and white matter areas. OBJECTIVE: We conducted an explorative analysis of longitudinal changes of cSC gray and white matter areas in MS patients. METHODS: 65 MS patients (33 relapsing-remitting; 20 secondary progressive and 12 primary progressive) and 20 healthy controls (HC) received clinical and upper cSC MRI assessments over 1.10±0.28 years. cSC compartments were quantified on MRI using the novel averaged magnetization inversion recovery acquisitions sequence (in-plane resolution=0.67 × 0.67mm2), and in-house developed post-processing methods. Patients were stratified regarding clinical progression. RESULTS: Patients with clinical progression showed faster reduction of cSC areas over time at the level of cSC enlargement (approximate vertebral level C4-C5) compared to stable patients (p<0.05). In addition, when compared to the rostral-cSC (approximate vertebral level C2-C3), a preferential reduction of cSC and white matter areas over time at the level of cSC enlargement (p<0.05 and p<0.01, respectively) was demonstrated only in patients with clinical progression, but not in stable MS patients and HC. Compared to HC, MS patients showed comparable changes over time in all cSC compartments. CONCLUSIONS: MS patients with clinical disease progression demonstrate subtle signs of a more pronounced tissue loss at the level of cSC enlargement. Future studies should consider larger sample sizes and more extended observation periods.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad , Atrofia/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología
3.
Front Neurol ; 12: 637198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841307

RESUMEN

Background: MR imaging of the spinal cord (SC) gray matter (GM) at the cervical and lumbar enlargements' level may be particularly informative in lower motor neuron disorders, e. g., spinal muscular atrophy, but also in other neurodegenerative or autoimmune diseases affecting the SC. Radially sampled averaged magnetization inversion recovery acquisition (rAMIRA) is a novel approach to perform SC imaging in clinical settings with favorable contrast and is well-suited for SC GM quantitation. However, before applying rAMIRA in clinical studies, it is important to understand (i) the sources of inter-subject variability of total SC cross-sectional areas (TCA) and GM area (GMA) measurements in healthy subjects and (ii) their relation to age and sex to facilitate the detection of pathology-associated changes. In this study, we aimed to develop normalization strategies for rAMIRA-derived SC metrics using skull and spine-based metrics to reduce anatomical variability. Methods: Sixty-one healthy subjects (age range 11-93 years, 37.7% women) were investigated with axial two-dimensional rAMIRA imaging at 3T MRI. Cervical and thoracic levels including the level of the cervical (C4/C5) and lumbar enlargements (Tmax) were examined. SC T2-weighted sagittal images and high-resolution 3D whole-brain T1-weighted images were acquired. TCA and GMAs were quantified. Anatomical variables with associations of |r| > 0.30 in univariate association with SC areas, and age and sex were used to construct normalization models using backward selection with TCAC4/C5 as outcome. The effect of the normalization was assessed by % relative standard deviation (RSD) reductions. Results: Mean inter-individual variability and the SD of the SC area metrics were considerable: TCAC4/5: 8.1%/9.0; TCATmax: 8.9%/6.5; GMAC4/C5: 8.6%/2.2; GMATmax: 12.2%/3.8. Normalization based on sex, brain WM volume, and spinal canal area resulted in RSD reductions of 23.7% for TCAs and 12.0% for GM areas at C4/C5. Normalizations based on the area of spinal canal alone resulted in RSD reductions of 10.2% for TCAs and 9.6% for GM areas at C4/C5, respectively. Discussion: Anatomic inter-individual variability of SC areas is substantial. This study identified effective normalization models for inter-subject variability reduction in TCA and SC GMA in healthy subjects based on rAMIRA imaging.

4.
Front Neurosci ; 14: 609422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424541

RESUMEN

Background: Brainstem-mediated functions are impaired in neurodegenerative diseases and aging. Atrophy can be visualized by MRI. This study investigates extrinsic sources of brainstem volume variability, intrinsic sources of anatomical variability, and the influence of age and sex on the brainstem volumes in healthy subjects. We aimed to develop efficient normalization strategies to reduce the effects of intrinsic anatomic variability on brainstem volumetry. Methods: Brainstem segmentation was performed from MPRAGE data using our deep-learning-based brainstem segmentation algorithm MD-GRU. The extrinsic variability of brainstem volume assessments across scanners and protocols was investigated in two groups comprising 11 (median age 33.3 years, 7 women) and 22 healthy subjects (median age 27.6 years, 50% women) scanned twice and compared using Dice scores. Intrinsic anatomical inter-individual variability and age and sex effects on brainstem volumes were assessed in segmentations of 110 healthy subjects (median age 30.9 years, range 18-72 years, 53.6% women) acquired on 1.5T (45%) and 3T (55%) scanners. The association between brainstem volumes and predefined anatomical covariates was studied using Pearson correlations. Anatomical variables with associations of |r| > 0.30 as well as the variables age and sex were used to construct normalization models using backward selection. The effect of the resulting normalization models was assessed by % relative standard deviation reduction and by comparing the inter-individual variability of the normalized brainstem volumes to the non-normalized values using paired t- tests with Bonferroni correction. Results: The extrinsic variability of brainstem volumetry across different field strengths and imaging protocols was low (Dice scores > 0.94). Mean inter-individual variability/SD of total brainstem volumes was 9.8%/7.36. A normalization based on either total intracranial volume (TICV), TICV and age, or v-scale significantly reduced the inter-individual variability of total brainstem volumes compared to non-normalized volumes and similarly reduced the relative standard deviation by about 35%. Conclusion: The extrinsic variability of the novel brainstem segmentation method MD-GRU across different scanners and imaging protocols is very low. Anatomic inter-individual variability of brainstem volumes is substantial. This study presents efficient normalization models for variability reduction in brainstem volumetry in healthy subjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA