Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Haematol ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155468

RESUMEN

We describe the case of a 74-year-old man with severe aplastic anaemia who experienced persistent remission attributed to proliferation of HLA allele-deficient clones. Despite an initial worsening of pancytopenia with eltrombopag and ciclosporin treatment, gradual trilineage haematopoietic recovery occurred, with blood counts normalizing over 3 years. Flow cytometry and deep nucleotide sequencing revealed that haematopoiesis was primarily supported by several clones with somatic mutations that inactivated antigen presentation via HLA-A*0206. This suggests that monitoring haematopoietic regeneration by immune escape clones could be an alternative approach for immune aplastic anaemia patients who possess HLA allele-deficient clones and cannot tolerate standard therapy.

2.
Front Neurol ; 15: 1376643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689878

RESUMEN

Epilepsy, characterized by recurrent seizures, impacts 70-80% of patients, leading to cognitive deficits. The intricate relationship between seizure control and cognitive impairment remains complex. Epileptic encephalopathy (EE), an intensified form often rooted in genetic factors, is detectable through next-generation sequencing, aiding in precise diagnoses, family counseling, and potential treatment strategies. We present a case involving two sisters with refractory generalized seizures evolving into dysarthria, dysphagia, ataxia, and cognitive decline. Despite normal physical exams, abnormal electroencephalogram results consistent with epilepsy were noted. Whole Exome Sequencing identified heterozygous variants in the alanyl-tRNA synthetase (AARS) and Calcium Voltage-Gated Channel Subunit Alpha 1 (CACNA1A) genes. The AARS variant (c.C2083T, p.R695*) was maternal, while the CACNA1A variant (c.G7400C, p.R2467P) was paternal. Patients A and B exhibited a unique blend of neurological and psychiatric conditions, distinct from common disorders that begin adolescence, like Juvenile Myoclonic Epilepsy. Whole Exome Sequencing uncovered an AARS gene and CACNA1A gene, linked to various autosomal dominant phenotypes. Presence in both parents, coupled with familial reports of migraines and seizures, provides insight into accelerated symptom progression. This study underscores the importance of genetic testing in decoding complex phenotypes and emphasizes the value of documenting family history for anticipating related symptoms and future health risks.

3.
Hum Immunol ; 85(3): 110771, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443236

RESUMEN

The Waorani, an isolated indigenous tribe in Ecuador, have long been characterized by limited genetic diversity, with few studies delving into their genetic background. Human Leukocyte Antigen (HLA) genes which are located in the human major histocompatibility complex (MHC) provides valuable insights into population evolution due to its highly polymorphic nature. However, little is known about the HLA diversity and ancestry of the Waorani population. In this study, we sequenced eight HLA genes using Next Generation Sequencing (NGS) from 134 Waorani individuals and obtained up to four-field HLA allele resolution. Cluster and phylogenetic analysis show that the Waorani are genetically distant from other Ecuador populations, but instead show genetic affinities with the Puyanawa and Terena tribes from Brazil, as well as the Mixe tribe from Mexico. The identification of alleles common within the Waorani population, previously linked to specific health conditions, notably paves the way for future association analyses. This extensive study, employing Next-Generation Sequencing (NGS) technology, significantly enriches the sparse and segmented understanding of HLA diversity in the South American region. Our findings enhance the global comprehension of human genetic diversity and underscore the value of studying indigenous populations. Such research is vital for deepening our insights into human migration patterns and evolutionary processes.


Asunto(s)
Frecuencia de los Genes , Variación Genética , Genética de Población , Antígenos HLA , Filogenia , Humanos , Alelos , Ecuador , Etnicidad/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos HLA/genética , Migración Humana
4.
Front Immunol ; 15: 1398935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807600

RESUMEN

Leukocyte immunoglobulin (Ig)-like receptors (LILRs) on human chromosome 19q13.4 encode 11 immunoglobulin superfamily receptors, exhibiting genetic diversity within and between human populations. Among the LILR genes, the genomic region surrounding LILRB3 and LILRA6 has yet to be fully characterized due to their significant sequence homology, which makes it difficult to differentiate between them. To examine the LILRB3 and LILRA6 genomic region, a tool named JoGo-LILR CN Caller, which can call copy number from short-read whole genome sequencing (srWGS) data, was applied to an extensive international srWGS dataset comprising 2,504 samples. During this process, a previously unreported loss of both LILRB3 and LILRA6 was detected in three samples. Using long-read sequencing of these samples, we have discovered a novel large deletion (33,692 bp) in the LILRB3 and LILRA6 genomic regions in the Japanese population. This deletion spanned three genes, LILRB3, LILRA6, and LILRB5, resulting in LILRB3 exons 12-13 being located immediately downstream of LILRB5 exons 1-12 with the loss of LILRA6, suggesting the potential expression of a hybrid gene between LILRB5 and LILRB3 (LILRB5-3). Transcription and subsequent translation of the LILRB5-3 hybrid gene were also verified. The hybrid junction was located within the intracellular domain, resulting in an LILRB5 extracellular domain fused to a partial LILRB3 intracellular domain with three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), suggesting that LILRB5-3 acquired a novel signaling function. Further application of the JoGo-LILR tool to srWGS samples suggested the presence of the LILRB5-3 hybrid gene in the CEU population. Our findings provide insight into the genetic and functional diversity of the LILR family.


Asunto(s)
Receptores Inmunológicos , Transducción de Señal , Humanos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética , Secuenciación Completa del Genoma , Variaciones en el Número de Copia de ADN , Antígenos CD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA