Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ann Neurol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934493

RESUMEN

OBJECTIVE: To investigate whether choroid plexus volumes in subacute coronavirus disease 2019 (COVID-19) patients with neurological symptoms could indicate inflammatory activation or barrier dysfunction and assess their association with clinical data. METHODS: Choroid plexus volumes were measured in 28 subacute COVID-19 patients via cerebral magnetic resonance imaging (MRI), compared with those in infection-triggered non-COVID-19 encephalopathy patients (n = 25), asymptomatic individuals after COVID-19 (n = 21), and healthy controls (n = 21). Associations with inflammatory serum markers (peak counts of leukocytes, C-reactive protein [CRP], interleukin 6), an MRI-based marker of barrier dysfunction (CSF volume fraction [V-CSF]), and clinical parameters like olfactory performance and cognitive scores (Montreal Cognitive Assessment) were investigated. RESULTS: COVID-19 patients showed significantly larger choroid plexus volumes than control groups (p < 0.001, η2 = 0.172). These volumes correlated significantly with peak leukocyte levels (p = 0.001, Pearson's r = 0.621) and V-CSF (p = 0.009, Spearman's rho = 0.534), but neither with CRP nor interleukin 6. No significant correlations were found with clinical parameters. INTERPRETATION: In patients with subacute COVID-19, choroid plexus volume is a marker of central nervous system inflammation and barrier dysfunction in the presence of neurologic symptoms. The absence of plexus enlargement in infection-triggered non-COVID-19 encephalopathy suggests a specific severe acute respiratory syndrome coronavirus 2 effect. This study also documents an increase in choroid plexus volume for the first time as a parainfectious event. ANN NEUROL 2024.

2.
Ann Neurol ; 93(5): 922-933, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36585896

RESUMEN

OBJECTIVES: The integrity of cortical motor networks and their descending effector pathway (the corticospinal tract [CST]) is a major determinant motor recovery after stroke. However, this view neglects the importance of ascending tracts and their modulatory effects on cortical physiology. Here, we explore the role of such a tract that connects dopaminergic ventral tegmental midbrain nuclei to the motor cortex (the VTMC tract) for post-stroke recovery. METHODS: Lesion data and diffusivity parameters (fractional anisotropy) of the ipsi- and contralesional VTMC tract and CST were obtained from 133 patients (63.9 ± 13.4 years, 45 women) during the acute and chronic stage after the first ever ischemic stroke in the middle cerebral artery territory. Degeneration of VTMC tract and CST was quantified and related to clinical outcome parameters (National Institute of Health Stroke Scale with motor and cortical symptom subscores; modified Fugl-Meyer upper extremity score; modified Ranking Scale [mRS]). RESULTS: A significant post-stroke degeneration occurred in both tracts, but only VTMC degeneration was associated with lesion size. Using multiple regression models, we dissected the impact of particular tracts on recovery: Changes in VTMC tract integrity were stronger associated with independence in daily activities (mRS), upper limb motor impairment (modified Fugl-Meyer upper extremity score) and cortical symptoms (aphasia, neglect) captured by National Institute of Health Stroke Scale compared to CST. Changes in CST integrity merely were associated with the degree of hemiparesis (National Institute of Health Stroke Scale motor subscale). INTERPRETATION: Post-stroke outcome is influenced by ascending (VTMC) and descending (CST) fiber tracts. Favorable outcome regarding independence (modified Ranking Scale), upper limb motor function (modified Fugl-Meyer upper extremity score), and cortical symptoms (aphasia, neglect) was more strongly related to the ascending than descending tract. ANN NEUROL 2023;93:922-933.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Femenino , Recuperación de la Función/fisiología , Accidente Cerebrovascular/complicaciones , Extremidad Superior , Imagen de Difusión por Resonancia Magnética , Tractos Piramidales/patología
3.
Acta Neuropathol ; 148(1): 11, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060438

RESUMEN

The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.


Asunto(s)
Encéfalo , COVID-19 , Inmunidad Innata , Humanos , COVID-19/inmunología , Inmunidad Innata/inmunología , Encéfalo/inmunología , Encéfalo/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Microglía/inmunología , Microglía/patología , Adulto , Linfocitos T CD8-positivos/inmunología , SARS-CoV-2/inmunología , Cicatriz/inmunología , Cicatriz/patología , Aprendizaje Automático
4.
Mov Disord ; 39(1): 130-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013497

RESUMEN

BACKGROUND: Multiple system atrophy (MSA) clinically manifests with either predominant nigrostriatal or cerebellopontine degeneration. This corresponds to two different phenotypes, one with predominant Parkinson's symptoms (MSA-P [multiple system atrophy-parkinsonian subtype]) and one with predominant cerebellar deficits (MSA-C [multiple system atrophy-cerebellar subtype]). Both nigrostriatal and cerebellar degeneration can lead to impaired dexterity, which is a frequent cause of disability in MSA. OBJECTIVE: The aim was to disentangle the contribution of nigrostriatal and cerebellar degeneration to impaired dexterity in both subtypes of MSA. METHODS: We thus investigated nigrostriatal and cerebellopontine integrity using diffusion microstructure imaging in 47 patients with MSA-P and 17 patients with MSA-C compared to 31 healthy controls (HC). Dexterity was assessed using the 9-Hole Peg Board (9HPB) performance. RESULTS: Nigrostriatal degeneration, represented by the loss of cells and neurites, leading to a larger free-fluid compartment, was present in MSA-P and MSA-C when compared to HCs. Whereas no intergroup differences were observed between the MSAs in the substantia nigra, MSA-P showed more pronounced putaminal degeneration than MSA-C. In contrast, a cerebellopontine axonal degeneration was observed in MSA-P and MSA-C, with stronger effects in MSA-C. Interestingly, the degeneration of cerebellopontine fibers is associated with impaired dexterity in both subtypes, whereas no association was observed with nigrostriatal degeneration. CONCLUSION: Cerebellar dysfunction contributes to impaired dexterity not only in MSA-C but also in MSA-P and may be a promising biomarker for disease staging. In contrast, no significant association was observed with nigrostriatal dysfunction. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen
5.
J Neurochem ; 167(3): 427-440, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37735852

RESUMEN

After ischemic stroke, the cortex directly adjacent to the ischemic core (i.e., the peri-infarct cortex, PIC) undergoes plastic changes that facilitate motor recovery. Dopaminergic signaling is thought to support this process. However, ischemic stroke also leads to the remote degeneration of dopaminergic midbrain neurons, possibly interfering with this beneficial effect. In this study, we assessed the reorganization of dopaminergic innervation of the PIC in a rat model of focal cortical stroke. Adult Sprague-Dawley rats either received a photothrombotic stroke (PTS) in the primary motor cortex (M1) or a sham operation. 30 days after PTS or sham procedure, the retrograde tracer Micro Ruby (MR) was injected into the PIC of stroke animals or into homotopic cortical areas of matched sham rats. Thus, dopaminergic midbrain neurons projecting into the PIC were identified based on MR signal and immunoreactivity against tyrosine hydroxylase (TH), a marker for dopaminergic neurons. The density of dopaminergic innervation within the PIC was assessed by quantification of dopaminergic boutons indicated by TH-immunoreactivity. Regarding postsynaptic processes, expression of dopamine receptors (D1- and D2) and a marker of the functional signal cascade (DARPP-32) were visualized histologically. Despite a 25% ipsilesional loss of dopaminergic midbrain neurons after PTS, the number and spatial distribution of dopaminergic neurons projecting to the PIC was not different compared to sham controls. Moreover, the density of dopaminergic innervation in the PIC was significantly higher than in homotopic cortical areas of the sham group. Within the PIC, D1-receptors were expressed in neurons, whereas D2-receptors were confined to astrocytes. The intensity of D1- and DARPP-32 expression appeared to be higher in the PIC compared to the contralesional homotopic cortex. Our data suggest a sprouting of dopaminergic fibers into the PIC and point to a role for dopaminergic signaling in reparative mechanisms post-stroke, potentially related to recovery.

6.
Brain ; 145(9): 3203-3213, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35675908

RESUMEN

While neuropathological examinations in patients who died from COVID-19 revealed inflammatory changes in cerebral white matter, cerebral MRI frequently fails to detect abnormalities even in the presence of neurological symptoms. Application of multi-compartment diffusion microstructure imaging (DMI), that detects even small volume shifts between the compartments (intra-axonal, extra-axonal and free water/CSF) of a white matter model, is a promising approach to overcome this discrepancy. In this monocentric prospective study, a cohort of 20 COVID-19 inpatients (57.3 ± 17.1 years) with neurological symptoms (e.g. delirium, cranial nerve palsies) and cognitive impairments measured by the Montreal Cognitive Assessment (MoCA test; 22.4 ± 4.9; 70% below the cut-off value <26/30 points) underwent DMI in the subacute stage of the disease (29.3 ± 14.8 days after positive PCR). A comparison of whole-brain white matter DMI parameters with a matched healthy control group (n = 35) revealed a volume shift from the intra- and extra-axonal space into the free water fraction (V-CSF). This widespread COVID-related V-CSF increase affected the entire supratentorial white matter with maxima in frontal and parietal regions. Streamline-wise comparisons between COVID-19 patients and controls further revealed a network of most affected white matter fibres connecting widespread cortical regions in all cerebral lobes. The magnitude of these white matter changes (V-CSF) was associated with cognitive impairment measured by the MoCA test (r = -0.64, P = 0.006) but not with olfactory performance (r = 0.29, P = 0.12). Furthermore, a non-significant trend for an association between V-CSF and interleukin-6 emerged (r = 0.48, P = 0.068), a prominent marker of the COVID-19 related inflammatory response. In 14/20 patients who also received cerebral 18F-FDG PET, V-CSF increase was associated with the expression of the previously defined COVID-19-related metabolic spatial covariance pattern (r = 0.57; P = 0.039). In addition, the frontoparietal-dominant pattern of neocortical glucose hypometabolism matched well to the frontal and parietal focus of V-CSF increase. In summary, DMI in subacute COVID-19 patients revealed widespread volume shifts compatible with vasogenic oedema, affecting various supratentorial white matter tracts. These changes were associated with cognitive impairment and COVID-19 related changes in 18F-FDG PET imaging.


Asunto(s)
COVID-19 , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , COVID-19/complicaciones , Edema , Fluorodesoxiglucosa F18 , Humanos , Estudios Prospectivos , Agua , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
Brain ; 144(4): 1263-1276, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33822001

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, neurological symptoms increasingly moved into the focus of interest. In this prospective cohort study, we assessed neurological and cognitive symptoms in hospitalized coronavirus disease-19 (COVID-19) patients and aimed to determine their neuronal correlates. Patients with reverse transcription-PCR-confirmed COVID-19 infection who required inpatient treatment primarily because of non-neurological complications were screened between 20 April 2020 and 12 May 2020. Patients (age > 18 years) were included in our cohort when presenting with at least one new neurological symptom (defined as impaired gustation and/or olfaction, performance < 26 points on a Montreal Cognitive Assessment and/or pathological findings on clinical neurological examination). Patients with ≥2 new symptoms were eligible for further diagnostics using comprehensive neuropsychological tests, cerebral MRI and 18fluorodeoxyglucose (FDG) PET as soon as infectivity was no longer present. Exclusion criteria were: premorbid diagnosis of cognitive impairment, neurodegenerative diseases or intensive care unit treatment. Of 41 COVID-19 inpatients screened, 29 patients (65.2 ± 14.4 years; 38% female) in the subacute stage of disease were included in the register. Most frequently, gustation and olfaction were disturbed in 29/29 and 25/29 patients, respectively. Montreal Cognitive Assessment performance was impaired in 18/26 patients (mean score 21.8/30) with emphasis on frontoparietal cognitive functions. This was confirmed by detailed neuropsychological testing in 15 patients. 18FDG PET revealed pathological results in 10/15 patients with predominant frontoparietal hypometabolism. This pattern was confirmed by comparison with a control sample using voxel-wise principal components analysis, which showed a high correlation (R2 = 0.62) with the Montreal Cognitive Assessment performance. Post-mortem examination of one patient revealed white matter microglia activation but no signs of neuroinflammation. Neocortical dysfunction accompanied by cognitive decline was detected in a relevant fraction of patients with subacute COVID-19 initially requiring inpatient treatment. This is of major rehabilitative and socioeconomic relevance.


Asunto(s)
COVID-19/metabolismo , Corteza Cerebral/metabolismo , Disfunción Cognitiva/metabolismo , Glucosa/metabolismo , Pruebas de Estado Mental y Demencia , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico por imagen , COVID-19/psicología , Corteza Cerebral/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/psicología , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos
8.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409207

RESUMEN

Dopaminergic signaling is a prerequisite for motor learning. Delayed degeneration of dopaminergic neurons after stroke is linked to motor learning deficits impairing motor rehabilitation. This study investigates safety and efficacy of substance P (SP) treatment on post-stroke rehabilitation, as this neuropeptide combines neuroprotective and plasticity-promoting properties. Male Sprague Dawley rats received a photothrombotic stroke within the primary motor cortex (M1) after which a previously acquired skilled reaching task was rehabilitated. Rats were treated with intraperitoneal saline (control group, n = 7) or SP-injections (250 µg/kg) 30 min before (SP-pre; n = 7) or 16 h (SP-post; n = 6) after rehabilitation training. Dopaminergic neurodegeneration, microglial activation and substance P-immunoreactivity (IR) were analyzed immunohistochemically. Systemic SP significantly facilitated motor rehabilitation. This effect was more pronounced in SP-pre compared to SP-post animals. SP prevented dopaminergic cell loss after stroke, particularly in the SP-pre condition. Despite its proinflammatory propensity, SP administration did not increase stroke volumes, post-stroke deficits or activation of microglia in the midbrain. Finally, SP administration prevented ipsilesional hypertrophy of striatal SPergic innervation, particularly in the SP-post condition. Mechanistically, SP-pre likely involved plasticity-promoting effects in the early phase of rehabilitation, whereas preservation of dopaminergic signaling may have ameliorated rehabilitative success in both SP groups during later stages of training. Our results demonstrate the facilitating effect of SP treatment on motor rehabilitation after stroke, especially if administered prior to training. SP furthermore prevented delayed dopaminergic degeneration and preserved physiological endogenous SPergic innervation.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Animales , Dopamina , Neuronas Dopaminérgicas , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia , Sustancia P
10.
Exp Brain Res ; 233(5): 1365-75, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25633321

RESUMEN

Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.


Asunto(s)
Mapeo Encefálico , Neuronas Dopaminérgicas/fisiología , Corteza Motora/citología , Vías Nerviosas/fisiología , Animales , Recuento de Células , Colorantes Fluorescentes/metabolismo , Masculino , Ratas , Ratas Long-Evans , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/citología
11.
Hippocampus ; 24(2): 189-203, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24108530

RESUMEN

GABAergic inhibitory interneurons control fundamental aspects of neuronal network function. Their functional roles are assumed to be defined by the identity of their input synapses, the architecture of their dendritic tree, the passive and active membrane properties and finally the nature of their postsynaptic targets. Indeed, interneurons display a high degree of morphological and physiological heterogeneity. However, whether their morphological and physiological characteristics are correlated and whether interneuron diversity can be described by a continuum of GABAergic cell types or by distinct classes has remained unclear. Here we perform a detailed morphological and physiological characterization of GABAergic cells in the dentate gyrus, the input region of the hippocampus. To achieve an unbiased and efficient sampling and classification we used knock-in mice expressing the enhanced green fluorescent protein (eGFP) in glutamate decarboxylase 67 (GAD67)-positive neurons and performed cluster analysis. We identified five interneuron classes, each of them characterized by a distinct set of anatomical and physiological parameters. Cross-correlation analysis further revealed a direct relation between morphological and physiological properties indicating that dentate gyrus interneurons fall into functionally distinct classes which may differentially control neuronal network activity.


Asunto(s)
Giro Dentado/citología , Interneuronas/clasificación , Interneuronas/fisiología , Animales , Animales Recién Nacidos , Bicuculina/análogos & derivados , Bicuculina/farmacología , Calbindina 2/metabolismo , Calbindinas/metabolismo , Análisis por Conglomerados , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Ácido Quinurénico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
Eur J Radiol ; 177: 111595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970994

RESUMEN

PURPOSE: CT perfusion (CTP) is a valuable tool in suspected acute ischemic stroke. A substantial variability of the delay between contrast injection and bolus arrival in the brain is conceivable. We investigated the distribution of the peak positions of the concentration time curves measured in an artery (arterial input function, AIF) and - in cases with ischemia - also measured in the penumbra. METHODS: We report on 2624 perfusion scans (52 % female, mean age 72.2 ± 14.4 years) with stroke present in 1636 cases. From the attenuation time curves of the AIF and the penumbra, we calculated the respective bolus peak positions and investigated the distribution of the peak positions. Further, we analyzed the bolus peak positions for associations with age. RESULTS: The bolus peaked significantly later in older patients, both in the AIF and in the penumbra (all p < 0.001). In the whole cohort, we found a significant association of age with the bolus peak position of the AIF (ρ = 0.334; p < 0.001). In patients with stroke, age was also associated to the peak position of the AIF (ρ = 0.305; p < 0.001), and the penumbra (ρ = 0.246, p < 0.001). However, a substantial range of peak positions of the AIF and penumbra was noted across all age ranges. CONCLUSIONS: This study revealed a strong age-dependency of the contrast bolus arrival in both healthy and ischemic tissue. This variability makes non-uniform sampling schemes, which have been suggested to reduce radiation dose, problematic, as they might not always optimally capture the bolus in all cases.


Asunto(s)
Medios de Contraste , Humanos , Femenino , Masculino , Anciano , Tomografía Computarizada por Rayos X/métodos , Anciano de 80 o más Años , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Factores de Edad , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios de Cohortes , Accidente Cerebrovascular/diagnóstico por imagen
13.
Clin Neuroradiol ; 34(2): 411-420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38289378

RESUMEN

PURPOSE: Various MRI-based techniques were tested for the differentiation of neurodegenerative Parkinson syndromes (NPS); the value of these techniques in direct comparison and combination is uncertain. We thus compared the diagnostic performance of macrostructural, single compartmental, and multicompartmental MRI in the differentiation of NPS. METHODS: We retrospectively included patients with NPS, including 136 Parkinson's disease (PD), 41 multiple system atrophy (MSA) and 32 progressive supranuclear palsy (PSP) and 27 healthy controls (HC). Macrostructural tissue probability values (TPV) were obtained by CAT12. The microstructure was assessed using a mesoscopic approach by diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and diffusion microstructure imaging (DMI). After an atlas-based read-out, a linear support vector machine (SVM) was trained on a training set (n = 196) and validated in an independent test cohort (n = 40). The diagnostic performance of the SVM was compared for different inputs individually and in combination. RESULTS: Regarding the inputs separately, we observed the best diagnostic performance for DMI. Overall, the combination of DMI and TPV performed best and correctly classified 88% of the patients. The corresponding area under the receiver operating characteristic curve was 0.87 for HC, 0.97 for PD, 1.0 for MSA, and 0.99 for PSP. CONCLUSION: We were able to demonstrate that (1) MRI parameters that approximate the microstructure provided substantial added value over conventional macrostructural imaging, (2) multicompartmental biophysically motivated models performed better than the single compartmental DTI and (3) combining macrostructural and microstructural information classified NPS and HC with satisfactory performance, thus suggesting a complementary value of both approaches.


Asunto(s)
Imagen de Difusión Tensora , Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Humanos , Masculino , Femenino , Anciano , Estudios Retrospectivos , Imagen de Difusión Tensora/métodos , Persona de Mediana Edad , Diagnóstico Diferencial , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Máquina de Vectores de Soporte , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos
14.
Neuroimage Clin ; 42: 103607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38643635

RESUMEN

BACKGROUND: Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS: Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS: The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION: Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Sustancia Negra , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/patología , Femenino , Masculino , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Persona de Mediana Edad , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Resultado del Tratamiento
15.
Nat Commun ; 15(1): 4256, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762609

RESUMEN

After contracting COVID-19, a substantial number of individuals develop a Post-COVID-Condition, marked by neurologic symptoms such as cognitive deficits, olfactory dysfunction, and fatigue. Despite this, biomarkers and pathophysiological understandings of this condition remain limited. Employing magnetic resonance imaging, we conduct a comparative analysis of cerebral microstructure among patients with Post-COVID-Condition, healthy controls, and individuals that contracted COVID-19 without long-term symptoms. We reveal widespread alterations in cerebral microstructure, attributed to a shift in volume from neuronal compartments to free fluid, associated with the severity of the initial infection. Correlating these alterations with cognition, olfaction, and fatigue unveils distinct affected networks, which are in close anatomical-functional relationship with the respective symptoms.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Fatiga , Imagen por Resonancia Magnética , Trastornos del Olfato , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , COVID-19/fisiopatología , COVID-19/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/virología , Masculino , Fatiga/fisiopatología , Femenino , Persona de Mediana Edad , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/virología , Trastornos del Olfato/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Síndrome Post Agudo de COVID-19 , Anciano
16.
AJNR Am J Neuroradiol ; 44(11): 1262-1269, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37884304

RESUMEN

BACKGROUND AND PURPOSE: Glioblastomas and metastases are the most common malignant intra-axial brain tumors in adults and can be difficult to distinguish on conventional MR imaging due to similar imaging features. We used advanced diffusion techniques and structural histopathology to distinguish these tumor entities on the basis of microstructural axonal and fibrillar signatures in the contrast-enhancing tumor component. MATERIALS AND METHODS: Contrast-enhancing tumor components were analyzed in 22 glioblastomas and 21 brain metastases on 3T MR imaging using DTI-fractional anisotropy, neurite orientation dispersion and density imaging-orientation dispersion, and diffusion microstructural imaging-micro-fractional anisotropy. Available histopathologic specimens (10 glioblastomas and 9 metastases) were assessed for the presence of axonal structures and scored using 4-level scales for Bielschowsky staining (0: no axonal structures, 1: minimal axonal fragments preserved, 2: decreased axonal density, 3: no axonal loss) and glial fibrillary acid protein expression (0: no glial fibrillary acid protein positivity, 1: limited expression, 2: equivalent to surrounding parenchyma, 3: increased expression). RESULTS: When we compared glioblastomas and metastases, fractional anisotropy was significantly increased and orientation dispersion was decreased in glioblastomas (each P < .001), with a significant shift toward increased glial fibrillary acid protein and Bielschowsky scores. Positive associations of fractional anisotropy and negative associations of orientation dispersion with glial fibrillary acid protein and Bielschowsky scores were revealed, whereas no association between micro-fractional anisotropy with glial fibrillary acid protein and Bielschowsky scores was detected. Receiver operating characteristic curves revealed high predictive values of both fractional anisotropy (area under the curve = 0.8463) and orientation dispersion (area under the curve = 0.8398) regarding the presence of a glioblastoma. CONCLUSIONS: Diffusion imaging fractional anisotropy and orientation dispersion metrics correlated with histopathologic markers of directionality and may serve as imaging biomarkers in contrast-enhancing tumor components.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen de Difusión Tensora/métodos , Proteína Ácida Fibrilar de la Glía , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología
17.
J Neurosci ; 31(7): 2481-7, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21325515

RESUMEN

The primary motor cortex (M1) of the rat contains dopaminergic terminals. The origin of this dopaminergic projection and its functional role for movement are obscure. Other areas of cortex receive dopaminergic projections from the ventral tegmental area (VTA) of the midbrain, and these projections are involved in learning phenomena. We therefore hypothesized that M1 receives a dopaminergic projection from VTA and that this projection mediates the learning of a motor skill by inducing cellular plasticity events in M1. Retrograde tracing from M1 of Long-Evans rats in conjunction with tyrosine hydroxylase immunohistochemistry identified dopaminergic cell bodies in VTA. Electrical stimulation of VTA induced expression of the immediate-early gene c-fos in M1, which was blocked by intracortical injections of D(1) and D(2) antagonists. Destroying VTA dopaminergic neurons prevented the improvements in forelimb reaching seen in controls during daily training. Learning recovered on administration of levodopa into the M1 of VTA-lesioned animals. Lesioning VTA did not affect performance of an already learned skill, hence, left movement execution intact. These findings provide evidence that dopaminergic terminals in M1 originate in VTA, contribute to M1 plasticity, and are necessary for successful motor skill learning. Because VTA dopaminergic neurons are known to signal rewards, the VTA-to-M1 projection is a candidate for relaying reward information that could directly support the encoding of a motor skill within M1.


Asunto(s)
Condicionamiento Operante/fisiología , Dopamina/metabolismo , Corteza Motora/fisiología , Destreza Motora/fisiología , Neuronas/fisiología , Área Tegmental Ventral/citología , Adrenérgicos/toxicidad , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Amidinas/metabolismo , Animales , Conducta Animal/fisiología , Benzazepinas/farmacología , Condicionamiento Operante/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Combinación de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Masculino , Corteza Motora/efectos de los fármacos , Oxidopamina/toxicidad , Proteínas Proto-Oncogénicas c-fos/metabolismo , Racloprida/farmacología , Ratas , Ratas Long-Evans , Tiempo de Reacción/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/lesiones , Área Tegmental Ventral/fisiología
18.
J Nucl Med ; 63(7): 971-980, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35177424

RESUMEN

Molecular imaging techniques such as PET and SPECT have been used to shed light on how coronavirus disease 2019 (COVID-19) affects the human brain. We provide a systematic review that summarizes the current literature according to 5 predominant topics. First, a few case reports have suggested reversible cortical and subcortical metabolic alterations in rare cases with concomitant para- or postinfectious encephalitis. Second, imaging findings in single patients with the first manifestations of parkinsonism in the context of COVID-19 resemble those in neurodegenerative parkinsonism (loss of nigrostriatal integrity), but scarceness of data and a lack of follow-up preclude further etiologic conclusions (e.g., unmasking/hastening of neurodegeneration vs. infectious or parainfectious parkinsonism). Third, several case reports and a few systematic studies have addressed focal symptoms and lesions, most notably hyposmia. The results have been variable, although some studies found regional hypometabolism of regions related to olfaction (e.g., orbitofrontal and mesiotemporal). Fourth, a case series and systematic studies in inpatients with COVID-19-related encephalopathy (acute to subacute stage) consistently found a frontoparietal-dominant neocortical dysfunction (on imaging and clinically) that proved to be grossly reversible in most cases until 6 mo. Fifth, studies on post-COVID-19 syndrome have provided controversial results. In patients with a high level of self-reported complaints (e.g., fatigue, memory impairment, hyposmia, and dyspnea), some authors found extensive areas of limbic and subcortical hypometabolism, whereas others found no metabolic alterations on PET and only minor cognitive impairments (if any) on neuropsychologic assessment. Furthermore, we provide a critical appraisal of studies with regard to frequent methodologic issues and current pathophysiologic concepts. Finally, we devised possible applications of PET and SPECT in the clinical work-up of diagnostic questions related to COVID-19.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Trastornos Parkinsonianos , Neumonía Viral , Anosmia , Encéfalo/diagnóstico por imagen , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , Infecciones por Coronavirus/epidemiología , Humanos , Imagen Molecular , Pandemias , Neumonía Viral/epidemiología , Síndrome Post Agudo de COVID-19
19.
Front Behav Neurosci ; 16: 817554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464145

RESUMEN

Background: We here report two cases of stimulation induced pathological laughter (PL) under thalamic deep brain stimulation (DBS) for essential tremor and interpret the effects based on a modified neuroanatomy of positive affect display (PAD). Objective/Hypothesis: The hitherto existing neuroanatomy of PAD can be augmented with recently described parts of the motor medial forebrain bundle (motorMFB). We speculate that a co-stimulation of parts of this fiber structure might lead to a non-volitional modulation of PAD resulting in PL. Methods: We describe the clinical and individual imaging workup and combine the interpretation with normative diffusion tensor imaging (DTI)-tractography descriptions of motor connections of the ventral tegmental area (VTA) (n = 200 subjects, HCP cohort), [[18F] fluorodeoxyglucose (18FDG)] positron emission tomography (PET), and volume of activated tissue simulations. We integrate these results with literature concerning PAD and the neuroanatomy of smiling and laughing. Results: DBS electrodes bilaterally co-localized with the MB-pathway ("limiter pathway"). The FDG PET activation pattern allowed to explain pathological PAD. A conceptual revised neuroanatomy of PAD is described. Conclusion: Eliciting pathological PAD through chronic thalamic DBS is a new finding and has previously not been reported. PAD is evolution driven, hard wired to the brain and realized over previously described branches of the motorMFB. A major relay region is the VTA/mammillary body complex. PAD physiologically undergoes conscious modulation mainly via the MB branch of the motorMFB (limiter). This limiter in our cases is bilaterally disturbed through DBS. The here described anatomy adds to a previously described framework of neuroanatomy of laughter and humor.

20.
Cancers (Basel) ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36612127

RESUMEN

Although the free water content within the perilesional T2 hyperintense region should differ between glioblastomas (GBM) and brain metastases based on histological differences, the application of classical MR diffusion models has led to inconsistent results regarding the differentiation between these two entities. Whereas diffusion tensor imaging (DTI) considers the voxel as a single compartment, multicompartment approaches such as neurite orientation dispersion and density imaging (NODDI) or the recently introduced diffusion microstructure imaging (DMI) allow for the calculation of the relative proportions of intra- and extra-axonal and also free water compartments in brain tissue. We investigate the potential of water-sensitive DTI, NODDI and DMI metrics to detect differences in free water content of the perilesional T2 hyperintense area between histopathologically confirmed GBM and brain metastases. Respective diffusion metrics most susceptible to alterations in the free water content (MD, V-ISO, V-CSF) were extracted from T2 hyperintense perilesional areas, normalized and compared in 24 patients with GBM and 25 with brain metastases. DTI MD was significantly increased in metastases (p = 0.006) compared to GBM, which was corroborated by an increased DMI V-CSF (p = 0.001), while the NODDI-derived ISO-VF showed only trend level increase in metastases not reaching significance (p = 0.060). In conclusion, diffusion MRI metrics are able to detect subtle differences in the free water content of perilesional T2 hyperintense areas in GBM and metastases, whereas DMI seems to be superior to DTI and NODDI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA