Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448586

RESUMEN

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Metabolómica , Femenino , Humanos , Embarazo , Acetona/sangre , Acetona/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Colestasis Intrahepática/sangre , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Estudios de Cohortes , Estudio de Asociación del Genoma Completo/métodos , Hipertensión/sangre , Hipertensión/genética , Hipertensión/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopía de Resonancia Magnética , Análisis de la Aleatorización Mendeliana , Redes y Vías Metabólicas/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo
2.
Mol Psychiatry ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548983

RESUMEN

While 1-2% of individuals meet the criteria for a clinical diagnosis of obsessive-compulsive disorder (OCD), many more (~13-38%) experience subclinical obsessive-compulsive symptoms (OCS) during their life. To characterize the genetic underpinnings of OCS and its genetic relationship to OCD, we conducted the largest genome-wide association study (GWAS) meta-analysis of parent- or self-reported OCS to date (N = 33,943 with complete phenotypic and genome-wide data), combining the results from seven large-scale population-based cohorts from Sweden, the Netherlands, England, and Canada (including six twin cohorts and one cohort of unrelated individuals). We found no genome-wide significant associations at the single-nucleotide polymorphism (SNP) or gene-level, but a polygenic risk score (PRS) based on the OCD GWAS previously published by the Psychiatric Genetics Consortium (PGC-OCD) was significantly associated with OCS (Pfixed = 3.06 × 10-5). Also, one curated gene set (Mootha Gluconeogenesis) reached Bonferroni-corrected significance (Ngenes = 28, Beta = 0.79, SE = 0.16, Pbon = 0.008). Expression of genes in this set is high at sites of insulin mediated glucose disposal. Dysregulated insulin signaling in the etiology of OCS has been suggested by a previous study describing a genetic overlap of OCS with insulin signaling-related traits in children and adolescents. We report a SNP heritability of 4.1% (P = 0.0044) in the meta-analyzed GWAS, and heritability estimates based on the twin cohorts of 33-43%. Genetic correlation analysis showed that OCS were most strongly associated with OCD (rG = 0.72, p = 0.0007) among all tested psychiatric disorders (N = 11). Of all 97 tested phenotypes, 24 showed a significant genetic correlation with OCS, and 66 traits showed concordant directions of effect with OCS and OCD. OCS have a significant polygenic contribution and share genetic risk with diagnosed OCD, supporting the hypothesis that OCD represents the extreme end of widely distributed OCS in the population.

3.
Twin Res Hum Genet ; 27(1): 1-11, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38497097

RESUMEN

In this cohort profile article we describe the lifetime major depressive disorder (MDD) database that has been established as part of the BIObanks Netherlands Internet Collaboration (BIONIC). Across the Netherlands we collected data on Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) lifetime MDD diagnosis in 132,850 Dutch individuals. Currently, N = 66,684 of these also have genomewide single nucleotide polymorphism (SNP) data. We initiated this project because the complex genetic basis of MDD requires large population-wide studies with uniform in-depth phenotyping. For standardized phenotyping we developed the LIDAS (LIfetime Depression Assessment Survey), which then was used to measure MDD in 11 Dutch cohorts. Data from these cohorts were combined with diagnostic interview depression data from 5 clinical cohorts to create a dataset of N = 29,650 lifetime MDD cases (22%) meeting DSM-5 criteria and 94,300 screened controls. In addition, genomewide genotype data from the cohorts were assembled into a genomewide association study (GWAS) dataset of N = 66,684 Dutch individuals (25.3% cases). Phenotype data include DSM-5-based MDD diagnoses, sociodemographic variables, information on lifestyle and BMI, characteristics of depressive symptoms and episodes, and psychiatric diagnosis and treatment history. We describe the establishment and harmonization of the BIONIC phenotype and GWAS datasets and provide an overview of the available information and sample characteristics. Our next step is the GWAS of lifetime MDD in the Netherlands, with future plans including fine-grained genetic analyses of depression characteristics, international collaborations and multi-omics studies.


Asunto(s)
Bancos de Muestras Biológicas , Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Humanos , Países Bajos/epidemiología , Femenino , Masculino , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/epidemiología , Persona de Mediana Edad , Adulto , Internet , Genómica , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Fenotipo , Anciano
4.
Multivariate Behav Res ; 59(2): 342-370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358370

RESUMEN

Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences between two variables with repeated assessments. The lagged effects in a CLPM depend on the time interval between assessments, eventually becoming undetectable at longer intervals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM with two study waves and two variables. Doing so enables estimation of both the lagged (i.e., "distal") effects and the bidirectional cross-sectional (i.e., "proximal") effects at each wave. The distal effects reflect Granger-causal influences across time, which decay with increasing time intervals. The proximal effects capture causal influences that accrue over time and can help infer causality when the distal effects become undetectable at longer intervals. Significant proximal effects, with a negligible distal effect, would imply that the time interval is too long to estimate a lagged effect at that time interval using the standard CLPM. Through simulations and an empirical application, we demonstrate the impact of time intervals on causal inference in the CLPM and present modeling strategies to detect causal influences regardless of the time interval in a study. Furthermore, to motivate empirical applications of the proposed model, we highlight the utility and limitations of using genetic variables as IVs in large-scale panel studies.


Asunto(s)
Modelos Estadísticos , Estudios Transversales , Causalidad
5.
BMC Med ; 21(1): 508, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129841

RESUMEN

BACKGROUND: The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS: Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS: We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS: Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.


Asunto(s)
Multiómica , Proteoma , Humanos , Adolescente , Adulto Joven , Adulto , Niño , Índice de Masa Corporal , Proteoma/genética , Gemelos Monocigóticos/genética , Estudios Longitudinales
6.
Front Psychiatry ; 15: 1388264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693999

RESUMEN

Background: Difficulty with self-control, or the ability to alter impulses and behavior in a goal-directed way, predicts interpersonal conflict, lower socioeconomic attainments, and more adverse health outcomes. Etiological understanding, and intervention for low self-control is, therefore, a public health goal. A prominent developmental theory proposes that individuals with high genetic propensity for low self-control that are also exposed to stressful environments may be most at-risk of low levels of self-control. Here we examine if polygenic measures associated with behaviors marked by low self-control interact with stressful life events in predicting self-control. Methods: Leveraging molecular data from a large population-based Dutch sample (N = 7,090, Mage = 41.2) to test for effects of genetics (i.e., polygenic scores for ADHD and aggression), stressful life events (e.g., traffic accident, violent assault, financial problems), and a gene-by-stress interaction on self-control (measured with the ASEBA Self-Control Scale). Results: Both genetics (ß =.03 -.04, p <.001) and stressful life events (ß = .11 -.14, p <.001) were associated with individual differences in self-control. We find no evidence of a gene-by-stressful life events interaction on individual differences in adults' self-control. Conclusion: Our findings are consistent with the notion that genetic influences and stressful life events exert largely independent effects on adult self-control. However, the small effect sizes of polygenic scores increases the likelihood of null results. Genetically-informed longitudinal research in large samples can further inform the etiology of individual differences in self-control from early childhood into later adulthood and its downstream implications for public health.

7.
Cancers (Basel) ; 16(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38672660

RESUMEN

Breast cancer (BC) is a complex disease affecting one in eight women in the USA. Advances in population genomics have led to the development of polygenic risk scores (PRSs) with the potential to augment current risk models, but replication is often limited. We evaluated 2 robust PRSs with 313 and 3820 SNPs and the effects of multiple genotype imputation replications in BC cases and control populations. Biological samples from BC cases and cancer-free controls were drawn from three European ancestry cohorts. Genotyping on the Illumina Global Screening Array was followed by stringent quality control measures and 20 genotype imputation replications. A total of 468 unrelated cases and 4337 controls were scored, revealing significant differences in mean PRS percentiles between cases and controls (p < 0.001) for both SNP sets (313-SNP PRS: 52.81 and 48.07; 3820-SNP PRS: 55.45 and 49.81), with receiver operating characteristic curve analysis showing area under the curve values of 0.596 and 0.603 for the 313-SNP and 3820-SNP PRS, respectively. PRS fluctuations (from ~2-3% up to 9%) emerged across imputation iterations. Our study robustly reaffirms the predictive capacity of PRSs for BC by replicating their performance in an independent BC population and showcases the need to average imputed scores for reliable outcomes.

8.
medRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38946972

RESUMEN

Epigenome-wide association studies (EWAS) aim to identify differentially methylated loci associated with complex traits and disorders. EWAS of cigarette smoking shows some of the most widespread DNA methylation (DNAm) associations in blood. However, traditional EWAS cannot differentiate between causation and confounding, leading to ambiguity in etiological interpretations. Here, we apply an integrated approach combining Mendelian Randomization and twin-based Direction-of-Causation analyses (MR-DoC) to examine causality underlying smoking-associated blood DNAm changes in the Netherlands Twin Register (N=2577). Evidence across models suggests that current smoking's causal effects on DNAm likely drive many of the previous EWAS findings, implicating functional pathways relevant to several adverse health outcomes of smoking, including hemopoiesis, cell- and neuro-development, and immune regulation. Additionally, we find evidence of potential reverse causal influences at some DNAm sites, with 17 of these sites enriched for gene regulatory functional elements in the brain. The top three sites with evidence of DNAm's effects on smoking annotate to genes involved in G protein-coupled receptor signaling (GNG7, RGS3) and innate immune response (SLC15A4), elucidating potential biological risk factors for smoking. This study highlights the utility of integrating genotypic and DNAm measures in twin cohorts to clarify the causal relationships between health behaviors and blood DNAm.

9.
medRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39108502

RESUMEN

Background: Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 of these individuals. Principal component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. Results: 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points (271 in total) yielded a correlation of 0.81. Conclusion: We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to using this robust DNA methylation profile as a new, stable biomarker for asthma.

10.
Genome Biol ; 25(1): 22, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229171

RESUMEN

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Adulto , Adolescente , Humanos , Niño , Preescolar , Pubertad/genética , Fenotipo , Estatura/genética , Evaluación de Resultado en la Atención de Salud , Estudios Longitudinales
11.
Res Sq ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746362

RESUMEN

Individual sensitivity to environmental exposures may be genetically influenced. This genotype-by-environment interplay implies differences in phenotypic variance across genotypes. However, environmental sensitivity genetic variants have proven challenging to detect. GWAS of monozygotic twin differences is a family-based variance analysis method, which is more robust to systemic biases that impact population-based methods. We combined data from up to 21,792 monozygotic twins (10,896 pairs) from 11 studies to conduct the largest GWAS meta-analysis of monozygotic phenotypic differences in children and adolescents/adults for seven psychiatric and neurodevelopmental phenotypes: attention deficit hyperactivity disorder (ADHD) symptoms, autistic traits, anxiety and depression symptoms, psychotic-like experiences, neuroticism, and wellbeing. The SNP-heritability of variance in these phenotypes were estimated (h2: 0% to 18%), but were imprecise. We identified a total of 13 genome-wide significant associations (SNP, gene, and gene-set), including genes related to stress-reactivity for depression, growth factor-related genes for autistic traits and catecholamine uptake-related genes for psychotic-like experiences. Monozygotic twins are an important new source of evidence about the genetics of environmental sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA