Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Langmuir ; 39(22): 7530-7538, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220302

RESUMEN

The softness of microgels depends on many aspects, such as particle characteristic lengths, sample concentration, chemical composition of the sample, and elastic moduli of the particle. Here, the response to crowding of ionic microgels is studied. Charged and uncharged ionic microgels are studied in concentrated suspensions of both neutral and ionic microgels with the same swollen size. The combination of small-angle X-ray and neutron scattering with contrast variation allows us to probe both the particle-to-particle arrangement and the response of individual ionic microgels to crowding. When the ionic microgels are uncharged, initial isotropic deswelling followed by faceting is observed. Therefore, the ionizable groups in the polymeric network do not affect the response of the ionic microgel to crowding, which is similar to what has been reported for neutral microgels. In contrast, the kind of microgels composing the matrix plays a key role once the ionic microgels are charged. If the matrix is composed of neutral microgels, a pronounced faceting and negligible deswelling is observed. When only charged ionic microgels are present in the suspension, isotropic deswelling without faceting is dominant.

2.
Soft Matter ; 18(31): 5750-5758, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899831

RESUMEN

The softness of an object can be quantified by one of the fundamental elastic moduli. The bulk modulus of the particle is most appropriate in the presence of isotropic compressions. Here, we use small-angle neutron scattering with contrast variation to directly access the bulk modulus of polymeric nanocapsules - pNIPAM-based hollow nanogels. We show that the size of the cavity is the most important quantity that determines the softness of hollow nanogels. During initial compression, the polymer collapses into the cavity and leads to a large change in the particle volume, resulting in a very small initial bulk modulus. Once the cavity is partially occupied by the polymer, the hollow nanogels become significantly stiffer since now the highly crosslinked network has to be compressed. Furthermore, we show that the larger the cavity, the softer the nanogel.

3.
J Chem Phys ; 157(19): 194901, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414436

RESUMEN

The response of soft colloids to crowding depends sensitively on the particles' compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.


Asunto(s)
Coloides , Polietilenglicoles , Nanogeles , Anisotropía , Polietilenglicoles/química , Coloides/química
4.
Environ Res ; 193: 110562, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33271143

RESUMEN

Humic acids (HAs) provide an important bio-source for redox-active materials. Their functional chemical groups are responsible for several properties, such as metal ion chelating activity, adsorption ability towards small molecules and antibacterial activity, through reactive oxygen species (ROS) generation. However, the poor selectivity and instability of HAs in solution hinder their application. A promising strategy for overcoming these disadvantages is conjugation with an inorganic phase, which leads to more stable hybrid nanomaterials with tuneable functionalities. In this study, we demonstrate that hybrid humic acid/titanium dioxide nanostructured materials that are prepared via a versatile in situ hydrothermal strategy display promising antibacterial activity against various pathogens and behave as selective sequestering agents of amoxicillin and tetracycline antibiotics from wastewater. A physicochemical investigation in which a combination of techniques were utilized, which included TEM, BET, 13C-CPMAS-NMR, EPR, DLS and SANS, shed light on the structure-property-function relationships of the nanohybrids. The proposed approach traces a technological path for the exploitation of organic biowaste in the design at the molecular scale of multifunctional nanomaterials, which is useful for addressing environmental and health problems that are related to water contamination by antibiotics and pathogens.


Asunto(s)
Sustancias Húmicas , Nanoestructuras , Antibacterianos/farmacología , Sustancias Húmicas/análisis , Titanio , Aguas Residuales
5.
Langmuir ; 36(30): 8777-8791, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32575987

RESUMEN

Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Albúminas , Proteínas Sanguíneas , Humanos , Nanopartículas de Magnetita/toxicidad , Nanomedicina , Fosforilcolina
6.
Soft Matter ; 16(40): 9183-9187, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33001130

RESUMEN

The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation.

7.
Nano Lett ; 19(11): 8161-8170, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31613114

RESUMEN

The development of soft anisotropic building blocks is of great interest for various applications in soft matter. Furthermore, such systems would be important model systems for ordering phenomena in fundamental soft matter science. In this work, we address the challenge of creating hollow and anisotropically shaped thermoresponsive microgels, polymeric networks with a solvent filled cavity in their center that are swollen in a good solvent. Sacrificial elliptical hematite silica particles were utilized as a template for the synthesis of a cross-linked N-isopropylacrylamide (NIPAm) shell. By varying the amount of NIPAm, two anisotropic microgels were synthesized with either a thin or thick microgel shell. We characterized these precursor core-shell and the resulting hollow microgels using a combination of light, X-ray, and neutron scattering. New form factor models, accounting for the cavity, the polymer distribution and the anisotropy, have been developed for fitting the scattering data. With such models, we demonstrated the existence of the cavity and simultaneously the anisotropic character of the microgels. Furthermore, we show that the thickness of the shell has a major influence on the shape and the cavity dimension of the microgel after etching of the sacrificial core. Finally, the effect of temperature is investigated, showing that changes in size, softness, and aspect ratio are triggered by temperature.

8.
Soft Matter ; 15(6): 1253-1259, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30418450

RESUMEN

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium cis- and trans-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, tetraethylene glycol mono(4',4-octyloxy,octyl-azobenzene) (C8AzoOC8E4) using small-angle neutron scattering (SANS). We show that the incorporation of in situ UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C8AzoOC8E4 could switch between wormlike micelles (trans native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked in situ through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.

9.
Soft Matter ; 15(5): 1053-1064, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30663759

RESUMEN

Poly(N-isopropylacrylamide) microgel particles were prepared via a "classical" surfactant-free precipitation polymerization and a continuous monomer feeding approach. It is anticipated that this yields microgel particles with different internal structures, namely a dense core with a fluffy shell for the classical approach and a more even crosslink distribution in the case of the continuous monomer feeding approach. A thorough structural investigation of the resulting microgels with dynamic light scattering, atomic force microscopy and small angle neutron scattering was conducted and related to neutron spin echo spectroscopy data. In this way a link between structural and dynamic features of the internal polymer network was made.

10.
J Am Chem Soc ; 140(17): 5682-5685, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29660982

RESUMEN

Antifreeze glycoproteins (AFGPs) from polar fish are the most potent ice recrystallization (growth) inhibitors known, and synthetic mimics are required for low-temperature applications such as cell cryopreservation. Here we introduce facially amphipathic glycopolymers that mimic the three-dimensional structure of AFGPs. Glycopolymers featuring segregated hydrophilic and hydrophobic faces were prepared by ring-opening metathesis polymerization, and their rigid conformation was confirmed by small-angle neutron scattering. Ice recrystallization inhibition (IRI) activity was reduced when a hydrophilic oxo-ether was installed on the glycan-opposing face, but significant activity was restored by incorporating a hydrophobic dimethylfulvene residue. This biomimetic strategy demonstrates that segregated domains of distinct hydrophilicity/hydrophobicity are a crucial motif to introduce IRI activity, which increases our understanding of the complex ice crystal inhibition processes.

11.
Langmuir ; 34(34): 10123-10134, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30071720

RESUMEN

Azobenzene photosurfactants are light-responsive amphiphiles that have garnered significant attention for diverse applications including delivery and sorting systems, phase transfer catalysis, and foam drainage. The azobenzene chromophore changes both its polarity and conformation (trans-cis isomerization) in response to UV light, while the amphiphilic structure drives self-assembly. Detailed understanding of the inherent relationship between the molecular structure, physicochemical behavior, and micellar arrangement of azobenzene photosurfactants is critical to their usefulness. Here, we investigate the key structure-function-assembly relationships in the popular cationic alkylazobenzene trimethylammonium bromide (AzoTAB) family of photosurfactants. We show that subtle changes in the surfactant structure (alkyl tail, spacer length) can lead to large variations in the critical micelle concentration, particularly in response to light, as determined by surface tensiometry and dynamic light scattering. Small-angle neutron scattering studies also reveal the formation of more diverse micellar aggregate structures (ellipsoids, cylinders, spheres) than predicted based on simple packing parameters. The results suggest that whereas the azobenzene core resides in the effective hydrophobic segment in the trans-isomer, it forms part of the effective hydrophilic segment in the cis-isomer because of the dramatic conformational and polarity changes induced by photoisomerization. The extent of this shift in the hydrophobic-hydrophilic balance is determined by the separation between the azobenzene core and the polar head group in the molecular structure. Our findings show that judicious design of the AzoTAB structure enables selective tailoring of the surfactant properties in response to light, such that they can be exploited and controlled in a reliable fashion.

12.
Soft Matter ; 14(45): 9118-9131, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30234879

RESUMEN

We found unprecedented reverse relationships in anion-exchange membranes (AEMs) for Pt-free alkaline fuel cell systems, i.e., the increase in hydrophobicity increased water uptake and susceptibility to hydrolysis. AEMs with graft copolymers that composed of anion-conducting 2-methyl-N-vinylimidazolium (Im) and hydrophobic styrene (St) units were employed. We characterized two new structures in these AEMs using a small-angle neutron scattering with a contrast variation method. (1) The distribution of graft polymers in conducting (ion channel) or non-conducting (hydrophobic amorphous poly(ethylene-co-tetrafluoroethylene) (ETFE)) phase was evaluated in a quantitative manner. High fraction in conducting layer for AEMs having high grafting degrees was found using the proposed structural model of "conducting/non-conducting two-phase system". (2) Assuming a hard-sphere fluid model, we found AEMs having high St contents and low alkaline durability possessed nanophase-separated water puddles with diameters of 3-4 nm. The AEM having a low St content and the best alkaline durability did not show evident nanophase separation. The above hierarchical structures elucidate the unexpected reverse relationships that the AEM having highly hydrophobic graft polymers was subjected to the morphological transition to give water puddles at nanoscale. The imidazolium groups that were located at the boundary between graft polymers and water puddles should be susceptible to hydrolysis.

13.
Langmuir ; 32(32): 8141-53, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27434827

RESUMEN

The selective engineering of conjugated polyelectrolyte (CPE)-phospholipid interfaces is poised to play a key role in the design of advanced biomedical and biotechnological devices. Herein, we report a strategic study to investigate the relationship between the charge of the CPE side group and their association with zwitterionic phospholipid bilayers. The interaction of dipalmitoylphosphatidylcholine (DPPC) phospholipid vesicles with a series of poly(thiophene)s bearing zwitterionic, cationic, or anionic terminal groups (P3Zwit, P3TMAHT and P3Anionic, respectively) has been probed. Although all CPEs showed an affinity for the zwitterionic vesicles, the calculated partition coefficients determined using photoluminescence spectroscopy suggested preferential incorporation within the lipid bilayer in the order P3Zwit > P3Anionic ≫ P3TMAHT. The polarity probe Prodan was used to further qualify the position of the CPE inside the vesicle bilayers via Förster resonance energy transfer (FRET) studies. The varying proximity of the CPEs to Prodan was reflected in the Stern-Volmer quenching constants and decreased in the order P3Anionic > P3TMAHT ≫ P3Zwit. Dynamic light scattering measurements showed an increase in the hydrodynamic diameter of the DPPC vesicles upon addition of each poly(thiophene), but to the greatest extent for P3Anionic. Small-angle neutron scattering studies also revealed that P3Anionic specifically increased the thickness of the headgroup region of the phospholipid bilayer. Epifluorescence and atomic force microscopy imaging showed that P3TMAHT formed amorphous agglomerates on the vesicle surface, P3Zwit was buried throughout the bilayer, and P3Anionic formed a shell of protruding chains around the surface, which promoted vesicle fusion. The global data indicate three distinctive modes of interaction for the poly(thiophene)s within DPPC vesicles, whereby the nature of the association is ultimately controlled by the pendant charge group on each CPE chain. Our results suggest that charge-mediated self-assembly may provide a simple and effective route to design luminescent CPE probes capable of specific localization within phospholipid membranes.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Modelos Químicos , Fosfolípidos/química , Polímeros/química , Tiofenos/química , Transferencia Resonante de Energía de Fluorescencia
14.
Phys Chem Chem Phys ; 18(18): 12423-7, 2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27098999

RESUMEN

The anionic conjugated polyelectrolyte, poly[3-(6-sulfothioatehexyl)thiophene] (P3Anionic), functions as a highly sensitive probe of membrane order, uniquely capable of sequentially detecting the three key phase transitions occurring within model phospholipid bilayers. The observed sensitivity is the result of charge-mediated, selective localisation of P3Anionic within the head-groups of the phospholipid bilayer.


Asunto(s)
Membrana Celular/química , Transición de Fase , Polielectrolitos/química , Polímeros/química , Ácidos Sulfónicos/química , Tiofenos/química , Color , Membrana Dobles de Lípidos/química , Modelos Moleculares , Conformación Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
15.
Sci Adv ; 8(26): eabn6129, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776796

RESUMEN

The bulk modulus, K, quantifies the elastic response of an object to an isotropic compression. For soft compressible colloids, knowing K is essential to accurately predict the suspension response to crowding. Most colloids have complex architectures characterized by different softness, which additionally depends on compression. Here, we determine the different values of K for the various morphological parts of individual nanogels and probe the changes of K with compression. Our method uses a partially deuterated polymer, which exerts the required isotropic stress, and small-angle neutron scattering with contrast matching to determine the form factor of the particles without any scattering contribution from the polymer. We show a clear difference in softness, compressibility, and evolution of K between the shell of the nanogel and the rest of the particle, depending on the amount of cross-linker used in their synthesis.

16.
Polymers (Basel) ; 13(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34300992

RESUMEN

In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory-Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus-Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G' and G'' crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory-Huggins interaction parameter, which can be further explored for possible applications.

17.
Nanoscale ; 12(11): 6300-6306, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32162625

RESUMEN

Viscoelastic fluids whose rheological properties are tunable with light have the potential to deliver significant impact in fields relying on a change in flow behavior, such as in-use tuning of combined efficient heat-transfer and drag-reduction agents, microfluidic flow and controlled encapsulation and release. However, simple, single-component systems must be developed to allow integration with these applications. Here, we report a single-component viscoelastic fluid, capable of a dramatic light-sensitive rheological response, from a neutral azobenzene photosurfactant, 4-hexyl-4'butyloxymonotetraethylene glycol (C6AzoOC4E4) in water. From cryo-transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and rheology measurements, we observe that the photosurfactant forms an entangled network of wormlike micelles in water, with a high viscosity (28 Pa s) and viscoelastic behaviour. UV irradiation of the surfactant solution creates a less dense micellar network, with some vesicle formation. As a result, the solution viscosity is reduced by four orders of magnitude (to 1.2 × 10-3 Pa s). This process is reversible and the high and low viscosity states can be cycled several times, through alternating UV and blue light irradiation.

18.
Int J Pharm ; 578: 119057, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31991188

RESUMEN

Miltefosine (MF), an alkylphospholipid originally developed for breast cancer treatment, is a highly active drug for the treatment against leishmaniasis, a neglected tropical disease considered the world's second leading cause of death by a parasitic agent after malaria. MF exhibits dose-limiting gastrointestinal side effects in patients and its penetration through lipophilic barriers is reduced. In this work we propose a reformulation of MF by incorporating the drug to poly(ethylene)oxide (PEO)-based polymeric micelles, specifically, D-α-tocopheryl polyethylene glycol succinate (TPGS) and Tetronic block copolymers (T904 and T1107). A full structural characterization of the aggregates has been carried out by SANS (small-angle neutron scattering) and dynamic light scattering (DLS), in combination with proton 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, to determine the precise location of the drug. The structure of MF micelles has been characterized as a function of the temperature and concentration. In the presence of the block-copolymers, MF forms mixed micelles in a wide range of temperatures, TPGS being the co-surfactant that incorporates more MF unimers. The hydrophobic tail of MF and those of the block copolymers are in close contact within the micelles, which present a core-shell structure with a hydrophilic corona formed by the PEG blocks of the TPGS and the zwitterion head group of the MF. In order to identify the best carrier, the antileishmanicidal activity of MF in the different formulations has been tested on macrophages, promastigotes and intracellular amastigotes. The combination of the three vehicles with MF makes the formulated drug more active than MF alone against L. major promastigotes, however, only the combination with T904 increases the MF activity against intracellular amastigotes. With the aim of exploring gel-based formulations of the drug, the combination of MF and T1107 under gelation conditions has also been investigated.


Asunto(s)
Antiprotozoarios/administración & dosificación , Portadores de Fármacos/administración & dosificación , Etilenodiaminas/administración & dosificación , Leishmania major/efectos de los fármacos , Micelas , Fosforilcolina/análogos & derivados , Vitamina E/administración & dosificación , Animales , Antiprotozoarios/química , Portadores de Fármacos/química , Dispersión Dinámica de Luz , Etilenodiaminas/química , Macrófagos/parasitología , Ratones , Estructura Molecular , Nanopartículas/administración & dosificación , Nanopartículas/química , Fosforilcolina/administración & dosificación , Fosforilcolina/química , Análisis Espectral , Vitamina E/química
19.
Rev Sci Instrum ; 91(7): 075111, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752852

RESUMEN

We have designed, built, and validated a (quasi)-simultaneous measurement platform called NUrF, which consists of neutron small-angle scattering, UV-visible, fluorescence, and densitometry techniques. In this contribution, we illustrate the concept and benefits of the NUrF setup combined with high-performance liquid chromatography pumps to automate the preparation and measurement of a mixture series of Brij35 nonionic surfactants with perfluorononanoic acid in the presence of a reporter fluorophore (pyrene).

20.
Nanoscale Adv ; 2(9): 4011-4023, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36132802

RESUMEN

The interactions between protein and surfactants play an important role in the stability and performance of formulated products. Due to the high complexity of such interactions, multi-technique approaches are required to study these systems. Here, an integrative approach is used to investigate the various interactions in a model system composed of human growth hormone and sodium dodecyl sulfate. Contrast variation small-angle neutron scattering was used to obtain information on the structure of the protein, surfactant aggregates and surfactant-protein complexes. 1H and 1H-13C HSQC nuclear magnetic resonance spectroscopy was employed to probe the local structure and dynamics of specific amino acids upon surfactant addition. Through the combination of these advanced methods with fluorescence spectroscopy, circular dichroism and isothermal titration calorimetry, it was possible to identify the interaction mechanisms between the surfactant and the protein in the pre- and post-micellar regimes, and interconnect the results from different techniques. As such, the protein was revealed to evolve from a partially unfolded conformation at low SDS concentration to a molten globule at intermediate concentrations, where the protein conformation and local dynamics of hydrophobic amino acids are partially affected compared to the native state. At higher surfactant concentrations the local structure of the protein appears disrupted, and a decorated micelle structure is observed, where the protein is wrapped around a surfactant assembly. Importantly, this integrative approach allows for the identification of the characteristic fingerprints of complex transitions as seen by each technique, and establishes a methodology for an in-detail study of surfactant-protein systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA