Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(17): 1566-1578, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37796241

RESUMEN

BACKGROUND: Hybrid closed-loop insulin therapy has shown promise for management of type 1 diabetes during pregnancy; however, its efficacy is unclear. METHODS: In this multicenter, controlled trial, we randomly assigned pregnant women with type 1 diabetes and a glycated hemoglobin level of at least 6.5% at nine sites in the United Kingdom to receive standard insulin therapy or hybrid closed-loop therapy, with both groups using continuous glucose monitoring. The primary outcome was the percentage of time in the pregnancy-specific target glucose range (63 to 140 mg per deciliter [3.5 to 7.8 mmol per liter]) as measured by continuous glucose monitoring from 16 weeks' gestation until delivery. Analyses were performed according to the intention-to-treat principle. Key secondary outcomes were the percentage of time spent in a hyperglycemic state (glucose level >140 mg per deciliter), overnight time in the target range, the glycated hemoglobin level, and safety events. RESULTS: A total of 124 participants with a mean (±SD) age of 31.1±5.3 years and a mean baseline glycated hemoglobin level of 7.7±1.2% underwent randomization. The mean percentage of time that the maternal glucose level was in the target range was 68.2±10.5% in the closed-loop group and 55.6±12.5% in the standard-care group (mean adjusted difference, 10.5 percentage points; 95% confidence interval [CI], 7.0 to 14.0; P<0.001). Results for the secondary outcomes were consistent with those of the primary outcome; participants in the closed-loop group spent less time in a hyperglycemic state than those in the standard-care group (difference, -10.2 percentage points; 95% CI, -13.8 to -6.6); had more overnight time in the target range (difference, 12.3 percentage points; 95% CI, 8.3 to 16.2), and had lower glycated hemoglobin levels (difference, -0.31 percentage points; 95% CI, -0.50 to -0.12). Little time was spent in a hypoglycemic state. No unanticipated safety problems associated with the use of closed-loop therapy during pregnancy occurred (6 instances of severe hypoglycemia, vs. 5 in the standard-care group; 1 instance of diabetic ketoacidosis in each group; and 12 device-related adverse events in the closed-loop group, 7 related to closed-loop therapy). CONCLUSIONS: Hybrid closed-loop therapy significantly improved maternal glycemic control during pregnancy complicated by type 1 diabetes. (Funded by the Efficacy and Mechanism Evaluation Program; AiDAPT ISRCTN Registry number, ISRCTN56898625.).


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 1 , Hipoglucemiantes , Sistemas de Infusión de Insulina , Insulina , Embarazo en Diabéticas , Adulto , Femenino , Humanos , Embarazo , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada/análisis , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Insulina/administración & dosificación , Insulina/efectos adversos , Insulina/uso terapéutico , Sistemas de Infusión de Insulina/efectos adversos , Embarazo en Diabéticas/sangre , Embarazo en Diabéticas/tratamiento farmacológico , Resultado del Tratamiento
2.
N Engl J Med ; 387(10): 882-893, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36069870

RESUMEN

BACKGROUND: Whether improved glucose control with hybrid closed-loop therapy can preserve C-peptide secretion as compared with standard insulin therapy in persons with new-onset type 1 diabetes is unclear. METHODS: In a multicenter, open-label, parallel-group, randomized trial, we assigned youths 10.0 to 16.9 years of age within 21 days after a diagnosis of type 1 diabetes to receive hybrid closed-loop therapy or standard insulin therapy (control) for 24 months. The primary end point was the area under the curve (AUC) for the plasma C-peptide level (after a mixed-meal tolerance test) at 12 months after diagnosis. The analysis was performed on an intention-to-treat basis. RESULTS: A total of 97 participants (mean [±SD] age, 12±2 years) underwent randomization: 51 were assigned to receive closed-loop therapy and 46 to receive control therapy. The AUC for the C-peptide level at 12 months (primary end point) did not differ significantly between the two groups (geometric mean, 0.35 pmol per milliliter [interquartile range, 0.16 to 0.49] with closed-loop therapy and 0.46 pmol per milliliter [interquartile range, 0.22 to 0.69] with control therapy; mean adjusted difference, -0.06 pmol per milliliter [95% confidence interval {CI}, -0.14 to 0.03]). There was not a substantial between-group difference in the AUC for the C-peptide level at 24 months (geometric mean, 0.18 pmol per milliliter [interquartile range, 0.06 to 0.22] with closed-loop therapy and 0.24 pmol per milliliter [interquartile range, 0.05 to 0.30] with control therapy; mean adjusted difference, -0.04 pmol per milliliter [95% CI, -0.14 to 0.06]). The arithmetic mean glycated hemoglobin level was lower in the closed-loop group than in the control group by 4 mmol per mole (0.4 percentage points; 95% CI, 0 to 8 mmol per mole [0.0 to 0.7 percentage points]) at 12 months and by 11 mmol per mole (1.0 percentage points; 95% CI, 7 to 15 mmol per mole [0.5 to 1.5 percentage points]) at 24 months. Five cases of severe hypoglycemia occurred in the closed-loop group (in 3 participants), and one occurred in the control group; one case of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In youths with new-onset type 1 diabetes, intensive glucose control for 24 months did not appear to prevent the decline in residual C-peptide secretion. (Funded by the National Institute for Health and Care Research and others; CLOuD ClinicalTrials.gov number, NCT02871089.).


Asunto(s)
Péptido C , Diabetes Mellitus Tipo 1 , Hipoglucemiantes , Insulina , Adolescente , Glucemia/análisis , Péptido C/metabolismo , Niño , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Sistemas de Infusión de Insulina
3.
N Engl J Med ; 386(3): 209-219, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35045227

RESUMEN

BACKGROUND: The possible advantage of hybrid closed-loop therapy (i.e., artificial pancreas) over sensor-augmented pump therapy in very young children with type 1 diabetes is unclear. METHODS: In this multicenter, randomized, crossover trial, we recruited children 1 to 7 years of age with type 1 diabetes who were receiving insulin-pump therapy at seven centers across Austria, Germany, Luxembourg, and the United Kingdom. Participants received treatment in two 16-week periods, in random order, in which the closed-loop system was compared with sensor-augmented pump therapy (control). The primary end point was the between-treatment difference in the percentage of time that the sensor glucose measurement was in the target range (70 to 180 mg per deciliter) during each 16-week period. The analysis was conducted according to the intention-to-treat principle. Key secondary end points included the percentage of time spent in a hyperglycemic state (glucose level, >180 mg per deciliter), the glycated hemoglobin level, the mean sensor glucose level, and the percentage of time spent in a hypoglycemic state (glucose level, <70 mg per deciliter). Safety was assessed. RESULTS: A total of 74 participants underwent randomization. The mean (±SD) age of the participants was 5.6±1.6 years, and the baseline glycated hemoglobin level was 7.3±0.7%. The percentage of time with the glucose level in the target range was 8.7 percentage points (95% confidence interval [CI], 7.4 to 9.9) higher during the closed-loop period than during the control period (P<0.001). The mean adjusted difference (closed-loop minus control) in the percentage of time spent in a hyperglycemic state was -8.5 percentage points (95% CI, -9.9 to -7.1), the difference in the glycated hemoglobin level was -0.4 percentage points (95% CI, -0.5 to -0.3), and the difference in the mean sensor glucose level was -12.3 mg per deciliter (95% CI, -14.8 to -9.8) (P<0.001 for all comparisons). The time spent in a hypoglycemic state was similar with the two treatments (P = 0.74). The median time spent in the closed-loop mode was 95% (interquartile range, 92 to 97) over the 16-week closed-loop period. One serious adverse event of severe hypoglycemia occurred during the closed-loop period. One serious adverse event that was deemed to be unrelated to treatment occurred. CONCLUSIONS: A hybrid closed-loop system significantly improved glycemic control in very young children with type 1 diabetes, without increasing the time spent in hypoglycemia. (Funded by the European Commission and others; ClinicalTrials.gov number, NCT03784027.).


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Control Glucémico/instrumentación , Hipoglucemiantes/administración & dosificación , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Algoritmos , Glucemia/análisis , Niño , Preescolar , Estudios Cruzados , Diseño de Equipo , Femenino , Hemoglobina Glucada/análisis , Control Glucémico/métodos , Humanos , Hiperglucemia/diagnóstico , Lactante , Masculino
4.
Diabetologia ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740602

RESUMEN

The role of automated insulin delivery systems in diabetes is expanding. Hybrid closed-loop systems are being used in routine clinical practice for treating people with type 1 diabetes. Encouragingly, real-world data reflects the performance and usability observed in clinical trials. We review the commercially available hybrid closed-loop systems, their distinctive features and the associated real-world data. We also consider emerging indications for closed-loop systems, including the treatment of type 2 diabetes where variability of day-to-day insulin requirements is high, and other challenging applications for this technology. We discuss issues around access and implementation of closed-loop technology, and consider the limitations of present closed-loop systems, as well as innovative approaches that are being evaluated to improve their performance.

5.
Diabet Med ; 40(5): e15072, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807582

RESUMEN

BACKGROUND: Interest is growing in how closed-loop systems can support attainment of within-target glucose levels amongst pregnant women with type 1 diabetes. We explored healthcare professionals' views about how, and why, pregnant women benefitted from using the CamAPS FX system during the AiDAPT trial. METHODS: We interviewed 19 healthcare professionals who supported women using closed-loop during the trial. Our analysis focused on identifying descriptive and analytical themes relevant to clinical practice. RESULTS: Healthcare professionals highlighted clinical and quality-of-life benefits to using closed-loop in pregnancy; albeit, they attributed some of these to the continuous glucose monitoring component. They emphasised that the closed-loop was not a panacea and that, to gain maximum benefit, an effective collaboration between themselves, the woman and the closed-loop was needed. Optimal performance of the technology, as they further noted, also required women to interact with the system sufficiently, but not excessively; a requirement that they felt some women had found challenging. Even where healthcare professionals felt that this balance was not achieved, they suggested that women had still benefitted from using the system. Healthcare professionals reported difficulties predicting how specific women would engage with the technology. In light of their trial experiences, healthcare professionals favoured an inclusive approach to closed-loop rollout in routine clinical care. CONCLUSIONS: Healthcare professionals recommended that closed-loop systems be offered to all pregnant women with type 1 diabetes in the future. Presenting closed-loop systems to pregnant women and healthcare teams as one pillar of a three-party collaboration may help promote optimal use.


Asunto(s)
Diabetes Mellitus Tipo 1 , Mujeres Embarazadas , Humanos , Femenino , Embarazo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Automonitorización de la Glucosa Sanguínea , Sistemas de Infusión de Insulina , Glucemia/análisis , Atención a la Salud
6.
Diabet Med ; 40(6): e15092, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947090

RESUMEN

AIMS: Fully closed-loop insulin delivery has been shown in clinical trials to be safe and improve glucose control compared with standard insulin therapy in the inpatient setting. We investigated the feasibility of implementing the approved CamAPS HX fully closed-loop system in a hospital setting. METHODS: This implementation project was conducted in a large teaching hospital in Cambridge, UK. Healthcare professional training was multimodal including face-to-face workshops, online learning modules and supported by standard operating procedures. Set-up and maintenance of closed-loop devices were undertaken by the inpatient diabetes team. Selection of suitable patients was multidisciplinary and prioritised those with more challenging diabetes management. Demographic and clinical data were collected from electronic health records and diabetes data management platforms. RESULTS: In the 12 months since the closed-loop system was implemented, 32 inpatients (mean ± SD age 61 ± 16 years, 8 females, 24 males) used closed-loop insulin delivery during their admission, across medical and surgical wards in the hospital with a total of 555 days of closed-loop glucose control (median [IQR]: 14 [6, 22] days per inpatient). The time spent in target glucose range 3.9-10.0 mmol/L was 53.3 ± 18.3%. Mean glucose was 10.7 ± 1.9 mmol/L with 46.0 ± 18.2% of time spent with glucose >10.0 mmol/L. Time spent with sensor glucose below 3.9 mmol/L was low (median [IQR]: 0.38 [0.00, 0.85]). There were no episodes of severe hypoglycaemia or diabetic ketoacidosis during closed-loop use. CONCLUSIONS: We have demonstrated that the fully closed-loop system can be safely and effectively implemented by a diabetes outreach team in complex medical and surgical inpatients with challenging glycaemic control.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Insulina/uso terapéutico , Glucemia , Hipoglucemiantes/uso terapéutico , Pacientes Internos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Resultado del Tratamiento , Sistemas de Infusión de Insulina , Estudios Cruzados
7.
Diabet Med ; 39(7): e14828, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35274356

RESUMEN

AIMS: To explore parents' experiences of using remote monitoring technology when caring for a very young child with type 1 diabetes during a clinical trial. METHODS: Interviews were conducted with parents of 30 children (aged 1-7 years) participating in a trial (the KidsAP02 study) comparing hybrid closed-loop insulin delivery with sensor-augmented pump therapy. In both arms, parents had access to remote monitoring technology. Data analysis focused on identification of descriptive themes. RESULTS: Remote monitoring technology gave parents improved access to data which helped them pre-empt and manage glucose excursions. Parents observed how, when children were in their own care, they could be more absent while present, as their attention could shift to non-diabetes-related activities. Conversely, when children were others' care, remote monitoring enabled parents to be present while absent, by facilitating oversight and collaboration with caregivers. Parents described how remote monitoring made them feel more confident allowing others to care for their children. Parents' confidence increased when using a hybrid closed-loop system, as less work was required to keep glucose in range. Benefits to children were also highlighted, including being able to play and sleep uninterrupted and attend parties and sleepovers without their parents. While most parents welcomed the increased sense of control remote monitoring offered, some noted downsides, such as lack of respite from caregiving responsibilities. CONCLUSIONS: Remote monitoring can offer manifold benefits to both parents and very young children with type 1 diabetes. Some parents, however, may profit from opportunities to take 'time out'.


Asunto(s)
Diabetes Mellitus Tipo 1 , Padres , Tecnología de Sensores Remotos , Glucemia , Automonitorización de la Glucosa Sanguínea , Niño , Preescolar , Ensayos Clínicos como Asunto , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Lactante , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Padres/psicología
8.
Diabetes Obes Metab ; 24(12): 2309-2318, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35837984

RESUMEN

AIM: To examine changes in the lived experience of type 1 diabetes after use of hybrid closed loop (CL), including the CamAPS FX CL system. MATERIALS AND METHODS: The primary study was conducted as an open-label, single-period, randomized, parallel design contrasting CL versus insulin pump (with or without continuous glucose monitoring). Participants were asked to complete patient-reported outcomes before starting CL and 3 and 6 months later. Surveys assessed diabetes distress, hypoglycaemia concerns and quality of life. Qualitative focus group data were collected at the completion of the study. RESULTS: In this sample of 98 youth (age range 6-18, mean age 12.7 ± 2.8 years) and their parents, CL use was not associated with psychosocial benefits overall. However, the subgroup (n = 12) using the CamAPS FX system showed modest improvements in quality of life and parent distress, reinforced by both survey (p < .05) and focus group responses. There were no negative effects of CL use reported by study participants. CONCLUSIONS: Closed loop use via the CamAPS FX system was associated with modest improvements in aspects of the lived experience of managing type 1 diabetes in youth and their families. Further refinements of the system may optimize the user experience.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Humanos , Niño , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Automonitorización de la Glucosa Sanguínea , Insulina/uso terapéutico , Calidad de Vida , Hipoglucemiantes/uso terapéutico , Glucemia , Resultado del Tratamiento , Sistemas de Infusión de Insulina , Padres/psicología
9.
Pediatr Diabetes ; 23(6): 799-808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561092

RESUMEN

OBJECTIVES: We explored parents' views about healthcare professionals having remote access to their young child's insulin and glucose data during a clinical trial to inform use of data sharing in routine pediatric diabetes care. RESEARCH DESIGN AND METHODS: Interviews with 33 parents of 30 children (aged 1-7 years) with type 1 diabetes participating in a randomized trial (KidsAP02) comparing hybrid closed-loop system use with sensor-augmented pump therapy. Data were analyzed using a qualitative descriptive approach. RESULTS: Parents reported multiple benefits to healthcare professionals being able to remotely access their child's glucose and insulin data during the trial, despite some initial concerns regarding the insights offered into everyday family life. Key benefits included: less work uploading/sharing data; improved consultations; and, better clinical input and support from healthcare professionals between consultations. Parents noted how healthcare professionals' real-time data access facilitated remote delivery of consultations during the COVID-19 pandemic, and how these were more suitable for young children than face-to-face appointments. Parents endorsed use of real-time data sharing in routine clinical care, subject to caveats regarding data access, security, and privacy. They also proposed that, if data sharing were used, consultations for closed-loop system users in routine clinical care could be replaced with needs-driven, ad-hoc contact. CONCLUSIONS: Real-time data sharing can offer clinical, logistical, and quality-of-life benefits and enhance opportunities for remote consultations, which may be more appropriate for young children. Wider rollout would require consideration of ethical and cybersecurity issues and, given the heightened intrusion on families' privacy, a non-judgmental, collaborative approach by healthcare professionals.


Asunto(s)
Diabetes Mellitus Tipo 1 , Padres , COVID-19 , Niño , Preescolar , Atención a la Salud , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucosa , Humanos , Lactante , Insulina/uso terapéutico , Pandemias , Padres/psicología , Investigación Cualitativa , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
BMC Pregnancy Childbirth ; 22(1): 282, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382796

RESUMEN

BACKGROUND: Pregnant women with type 1 diabetes strive for tight glucose targets (3.5-7.8 mmol/L) to minimise the risks of obstetric and neonatal complications. Despite using diabetes technologies including continuous glucose monitoring (CGM), insulin pumps and contemporary insulin analogues, most women struggle to achieve and maintain the recommended pregnancy glucose targets. This study aims to evaluate whether the use of automated closed-loop insulin delivery improves antenatal glucose levels in pregnant women with type 1 diabetes. METHODS/DESIGN: A multicentre, open label, randomized, controlled trial of pregnant women with type 1 diabetes and a HbA1c of ≥48 mmol/mol (6.5%) at pregnancy confirmation and ≤ 86 mmol/mol (10%) at randomization. Participants who provide written informed consent before 13 weeks 6 days gestation will be entered into a run-in phase to collect 96 h (24 h overnight) of CGM glucose values. Eligible participants will be randomized on a 1:1 basis to CGM (Dexcom G6) with usual insulin delivery (control) or closed-loop (intervention). The closed-loop system includes a model predictive control algorithm (CamAPS FX application), hosted on an android smartphone that communicates wirelessly with the insulin pump (Dana Diabecare RS) and CGM transmitter. Research visits and device training will be provided virtually or face-to-face in conjunction with 4-weekly antenatal clinic visits where possible. Randomization will stratify for clinic site. One hundred twenty-four participants will be recruited. This takes into account 10% attrition and 10% who experience miscarriage or pregnancy loss. Analyses will be performed according to intention to treat. The primary analysis will evaluate the change in the time spent in the target glucose range (3.5-7.8 mmol/l) between the intervention and control group from 16 weeks gestation until delivery. Secondary outcomes include overnight time in target, time above target (> 7.8 mmol/l), standard CGM metrics, HbA1c and psychosocial functioning and health economic measures. Safety outcomes include the number and severity of ketoacidosis, severe hypoglycaemia and adverse device events. DISCUSSION: This will be the largest randomized controlled trial to evaluate the impact of closed-loop insulin delivery during type 1 diabetes pregnancy. TRIAL REGISTRATION: ISRCTN 56898625 Registration Date: 10 April, 2018.


Asunto(s)
Diabetes Mellitus Tipo 1 , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Recién Nacido , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Estudios Multicéntricos como Asunto , Embarazo , Mujeres Embarazadas , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Diabetologia ; 64(5): 1007-1015, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550442

RESUMEN

Advances in diabetes technologies have enabled the development of automated closed-loop insulin delivery systems. Several hybrid closed-loop systems have been commercialised, reflecting rapid transition of this evolving technology from research into clinical practice, where it is gradually transforming the management of type 1 diabetes in children and adults. In this review we consider the supporting evidence in terms of glucose control and quality of life for presently available closed-loop systems and those in development, including dual-hormone closed-loop systems. We also comment on alternative 'do-it-yourself' closed-loop systems. We remark on issues associated with clinical adoption of these approaches, including training provision, and consider limitations of presently available closed-loop systems and areas for future enhancements to further improve outcomes and reduce the burden of diabetes management.


Asunto(s)
Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Adulto , Glucemia/análisis , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/tendencias , Niño , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Insulina/efectos adversos , Invenciones/tendencias , Páncreas Artificial/provisión & distribución , Páncreas Artificial/tendencias
12.
N Engl J Med ; 379(6): 547-556, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29940126

RESUMEN

BACKGROUND: In patients with diabetes, hospitalization can complicate the achievement of recommended glycemic targets. There is increasing evidence that a closed-loop delivery system (artificial pancreas) can improve glucose control in patients with type 1 diabetes. We wanted to investigate whether a closed-loop system could also improve glycemic control in patients with type 2 diabetes who were receiving noncritical care. METHODS: In this randomized, open-label trial conducted on general wards in two tertiary hospitals located in the United Kingdom and Switzerland, we assigned 136 adults with type 2 diabetes who required subcutaneous insulin therapy to receive either closed-loop insulin delivery (70 patients) or conventional subcutaneous insulin therapy, according to local clinical practice (66 patients). The primary end point was the percentage of time that the sensor glucose measurement was within the target range of 100 to 180 mg per deciliter (5.6 to 10.0 mmol per liter) for up to 15 days or until hospital discharge. RESULTS: The mean (±SD) percentage of time that the sensor glucose measurement was in the target range was 65.8±16.8% in the closed-loop group and 41.5±16.9% in the control group, a difference of 24.3±2.9 percentage points (95% confidence interval [CI], 18.6 to 30.0; P<0.001); values above the target range were found in 23.6±16.6% and 49.5±22.8% of the patients, respectively, a difference of 25.9±3.4 percentage points (95% CI, 19.2 to 32.7; P<0.001). The mean glucose level was 154 mg per deciliter (8.5 mmol per liter) in the closed-loop group and 188 mg per deciliter (10.4 mmol per liter) in the control group (P<0.001). There was no significant between-group difference in the duration of hypoglycemia (as defined by a sensor glucose measurement of <54 mg per deciliter; P=0.80) or in the amount of insulin that was delivered (median dose, 44.4 U and 40.2 U, respectively; P=0.50). No episode of severe hypoglycemia or clinically significant hyperglycemia with ketonemia occurred in either trial group. CONCLUSIONS: Among inpatients with type 2 diabetes receiving noncritical care, the use of an automated, closed-loop insulin-delivery system resulted in significantly better glycemic control than conventional subcutaneous insulin therapy, without a higher risk of hypoglycemia. (Funded by Diabetes UK and others; ClinicalTrials.gov number, NCT01774565 .).


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Páncreas Artificial , Anciano , Diabetes Mellitus Tipo 2/sangre , Femenino , Hospitalización , Humanos , Infusiones Subcutáneas , Sistemas de Infusión de Insulina/efectos adversos , Masculino , Persona de Mediana Edad , Páncreas Artificial/efectos adversos
13.
Diabet Med ; 38(11): e14647, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34270822

RESUMEN

AIMS: To identify key gaps in the research evidence base that could help improve how technology supports people with diabetes, and provide recommendations to researchers and research funders on how best to address them. METHODS: A research workshop was conducted, bringing together research experts in diabetes, research experts in technology, people living with diabetes and healthcare professionals. RESULTS: The following key areas within this field were identified, and research recommendations for each were developed: Matching the pace of research with that of technology development Time in range as a measure Health inequalities and high-risk groups How to train people to use technology most effectively Impact of technology usage on mental health CONCLUSIONS: This position statement outlines recommendations through which research could improve how technology is employed to care for and support people living with diabetes, and calls on the research community and funders to address them in future research programmes and strategies.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Guías como Asunto , Salud Mental , Tecnología/organización & administración , Diabetes Mellitus Tipo 1/epidemiología , Humanos , Morbilidad/tendencias , Estudios Retrospectivos , Reino Unido/epidemiología
14.
Diabetes Obes Metab ; 23(8): 1722-1732, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33950566

RESUMEN

The growing incidence of type 2 diabetes (T2D) is a significant health concern, representing 90% of diabetes cases worldwide. As the disease progresses, resultant insulin deficiency and hyperglycaemia necessitates insulin therapy in many cases. It has been recognized that a significant number of people who have a clinical requirement for insulin therapy, as well as their healthcare professionals, are reluctant to intensify treatment with insulin due to fear of hypoglycaemia, poor understanding of treatment regimens or lack of engagement, and are therefore at higher risk of developing complications from poor glycaemic control. Over the past decade, the rise of diabetes technologies, including dosing advisors, continuous glucose monitoring systems, insulin pumps and automated insulin delivery systems, has led to great improvements in the therapies available, particularly to those requiring insulin. Although the focus has largely been on delivering these therapies to the type 1 diabetes population, it is becoming increasingly recognized that people with T2D face similar challenges to achieve recommended glycaemic standards and also have the potential to benefit from these advances. In this review, we discuss diabetes technologies that are currently available for people with T2D and the evidence supporting their use, as well as future prospects. We conclude that there is a clinical need to extend the use of these technologies to the T2D population to curb the consequences of suboptimal disease management in this group.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucemia , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Tecnología
15.
Diabetes Obes Metab ; 23(1): 228-233, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902125

RESUMEN

We retrospectively assessed gluco-regulatory hormones over 10 h (including two meals) of fully automated closed-loop insulin delivery using faster (FA) versus standard insulin aspart (IAsp) in adults with type 2 diabetes [n = 15, age 59 ± 10 years, body mass index 34.5 ± 9.1 kg/m2 , glycated haemoglobin 7.7 ± 1.2% (60 ± 13 mmol/mol)]. Plasma concentration of human insulin, IAsp, C-peptide, glucagon, glucagon-like peptide 1, glucose-dependent insulinotropic peptide and peptide tyrosine tyrosine were measured every 15-30 min. Endogenous insulin secretion was calculated using C-peptide deconvolution and exposures to hormones were compared using their mean plasma concentrations. Ten-hour exposure of IAsp was higher with FA versus IAsp (P = .037) in line with the 10% higher insulin requirements to achieve similar glucose control. No significant difference was found for total insulin exposure and endogenous insulin secretion. Similarly, other gluco-regulatory hormones did not significantly differ. In conclusion, the faster pharmacokinetic profile and slightly higher aspart exposure of FA versus IAsp remained without significant effects on endogenous insulin secretion or other gluco-regulatory hormones. Further studies are warranted to explore the metabolic and endocrine effects of novel insulins with accelerated pharmacokinetic properties.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Anciano , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Método Doble Ciego , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Insulina Aspart/uso terapéutico , Sistemas de Infusión de Insulina , Persona de Mediana Edad , Estudios Retrospectivos
16.
Diabetes Obes Metab ; 23(1): 234-239, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32885596

RESUMEN

Fully automated closed-loop insulin delivery may offer a novel way to manage diabetes in hospital. However, postprandial glycaemic control remains challenging. We aimed to assess the effect of nutritional intake on postprandial glucose control in hospitalized patients with type 2 diabetes receiving fully closed-loop insulin therapy. The effects of different meal types and macronutrient composition on sensor glucose time-in-target (TIT, 3.9-10.0 mmol/L) and mean sensor glucose were assessed with hierarchical linear models using a Bayesian estimation approach. TIT was lower and the mean sensor glucose slightly higher, after breakfast compared with lunch and dinner, whereas the insulin dose was higher. Across meals, when carbohydrates were replaced by fat, or to a lesser extent by protein, postprandial glucose control improved. For breakfast, a 3.9% improvement in TIT was observed when 10% of the energy from carbohydrates was replaced by fat. Improvements were slightly lower during lunch and dinner (3.2% and 3.4%) or when carbohydrates were replaced by protein (2.2 and 2.7%, respectively). We suggest that reducing carbohydrate at the expense of fat or protein, could further improve glucose control during fully closed-loop insulin therapy in hospital.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Teorema de Bayes , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Insulina , Sistemas de Infusión de Insulina , Comidas , Periodo Posprandial
17.
Diabetes Obes Metab ; 23(8): 1978-1982, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33822461

RESUMEN

The aim of this study was to characterize the variability of exogenous insulin requirements during fully closed-loop insulin delivery in hospitalized patients with type 2 diabetes or new-onset hyperglycaemia, and to determine patient-related characteristics associated with higher variability of insulin requirements. We retrospectively analysed data from two fully closed-loop inpatient studies involving adults with type 2 diabetes or new-onset hyperglycaemia requiring insulin therapy. The coefficient of variation quantified day-to-day variability of exogenous insulin requirements during up to 15 days using fully automated closed-loop insulin delivery. Data from 535 days in 67 participants were analysed. The coefficient of variation of day-to-day exogenous insulin requirements was 30% ± 16%, and was higher between nights than between any daytime period (56% ± 29% overnight [11:00 pm to 4:59 am] compared with 41% ± 21% in the morning [5:00 am to 10:59 am], 39% ± 15% in the afternoon [11:00 am to 4:59 pm] and 45% ± 19% during the evening [5:00 pm to 10:59 pm]; all P < 0.01). There is high day-to-day variability of exogenous insulin requirements in inpatients, particularly overnight, and diabetes management approaches should account for this variability.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Pacientes Internos , Insulina/uso terapéutico , Sistemas de Infusión de Insulina , Estudios Retrospectivos
18.
Diabetes Obes Metab ; 23(6): 1389-1396, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606901

RESUMEN

AIM: To evaluate the use of hybrid closed-loop glucose control with faster-acting insulin aspart (Fiasp) in adults with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: In a double-blind, multinational, randomized, crossover study, 25 adults with T1D using insulin pump therapy (mean ± SD, age 38 ± 9 years, HbA1c 7.4% ± 0.8% [57 ± 8 mmol/mol]) underwent two 8-week periods of unrestricted living comparing hybrid closed-loop with Fiasp and hybrid closed-loop with standard insulin aspart in random order. During both interventions the CamAPS FX closed-loop system incorporating the Cambridge model predictive control algorithm was used. RESULTS: In an intention-to-treat analysis, the proportion of time sensor glucose was in the target range (3.9-10.0 mmol/L; primary endpoint) was not different between interventions (75% ± 8% vs. 75% ± 8% for hybrid closed-loop with Fiasp vs. hybrid closed-loop with standard insulin aspart; mean-adjusted difference -0.6% [95% CI -1.8% to 0.7%]; p < .001 for non-inferiority [non-inferiority margin 5%]). The proportion of time with sensor glucose less than 3.9 mmol/L (median [IQR] 2.4% [1.2%-3.2%] vs. 2.9% [1.7%-4.0%]; p = .01) and less than 3.0 mmol/L (median [IQR] 0.4% [0.2%-0.7%] vs. 0.7% [0.2%-0.9%]; p = .03) was reduced with Fiasp versus standard insulin aspart. There was no difference in mean glucose (8.1 ± 0.8 vs. 8.0 ± 0.8 mmol/L; p = .13) or glucose variability (SD of sensor glucose 2.9 ± 0.5 vs. 2.9 ± 0.5 mmol/L; p = .90). Total daily insulin requirements did not differ (49 ± 15 vs. 49 ± 15 units/day; p = .45). No severe hypoglycaemia or ketoacidosis occurred. CONCLUSIONS: The use of Fiasp in the CamAPS FX closed-loop system may reduce hypoglycaemia without compromising glucose control compared with standard insulin aspart in adults with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina Aspart , Adulto , Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Insulina Aspart/uso terapéutico , Sistemas de Infusión de Insulina , Persona de Mediana Edad
20.
Curr Opin Organ Transplant ; 25(4): 336-342, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32618719

RESUMEN

PURPOSE OF REVIEW: Advances in diabetes technologies have enabled the development of artificial pancreas (closed-loop) systems for people with diabetes. We review the key studies which have led to the adoption of the artificial pancreas in clinical practice and consider ongoing challenges and areas for future enhancements. RECENT FINDINGS: Studies have demonstrated safety and efficacy of closed-loop insulin delivery systems in free-living settings over periods of up to 6 months for children and adults with type 1 diabetes. Since 2017, four hybrid closed-loop systems have been approved by regulatory bodies worldwide, but these systems are not entirely automated, requiring user interaction to deliver mealtime insulin boluses. Improving usability of these devices in the real-world setting is an important challenge. SUMMARY: The artificial pancreas has become the gold standard for the treatment of type 1 diabetes. First-generation systems are increasingly being adopted in clinical practice, however further work is required, developing advanced systems and faster acting insulin analogues to allow complete automation and further reduce the burden of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Páncreas Artificial , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes , Insulina/administración & dosificación , Sistemas de Infusión de Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA