Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Methods ; 10(8): 781-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23793239

RESUMEN

Directed differentiation protocols enable derivation of cardiomyocytes from human pluripotent stem cells (hPSCs) and permit engineering of human myocardium in vitro. However, hPSC-derived cardiomyocytes are reflective of very early human development, limiting their utility in the generation of in vitro models of mature myocardium. Here we describe a platform that combines three-dimensional cell cultivation with electrical stimulation to mature hPSC-derived cardiac tissues. We used quantitative structural, molecular and electrophysiological analyses to explain the responses of immature human myocardium to electrical stimulation and pacing. We demonstrated that the engineered platform allows for the generation of three-dimensional, aligned cardiac tissues (biowires) with frequent striations. Biowires submitted to electrical stimulation had markedly increased myofibril ultrastructural organization, elevated conduction velocity and improved both electrophysiological and Ca(2+) handling properties compared to nonstimulated controls. These changes were in agreement with cardiomyocyte maturation and were dependent on the stimulation rate.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Miocitos Cardíacos/citología , Ingeniería de Tejidos/métodos , Diferenciación Celular/fisiología , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Humanos , Microscopía Electrónica de Transmisión , Miocardio/ultraestructura
2.
Nanotechnology ; 22(49): 494003, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22101261

RESUMEN

While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.


Asunto(s)
Microtecnología/métodos , Miocardio/citología , Nanotecnología/métodos , Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Animales , Humanos , Técnicas Analíticas Microfluídicas/métodos , Andamios del Tejido/química
3.
Oncotarget ; 9(28): 19767-19782, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29731981

RESUMEN

Recognition of noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) that distinguishes them from invasive malignant encapsulated follicular variant of papillary thyroid carcinoma (EFVPTC) can prevent overtreatment of NIFTP patients. We and others have previously reported that programmed death-ligand 1 (PD-L1) is a useful biomarker in thyroid tumors; however, all reports to date have relied on manual scoring that is time consuming as well as subject to individual bias. Consequently, we developed a digital image analysis (DIA) protocol for cytoplasmic and membranous stain quantitation (ThyApp) and evaluated three tumor sampling methods [Systemic Uniform Random Sampling, hotspot nucleus, and hotspot nucleus/3,3'-Diaminobenzidine (DAB)]. A patient cohort of 153 cases consisting of 48 NIFTP, 44 EFVPTC, 26 benign nodules and 35 encapsulated follicular lesions/neoplasms with lymphocytic thyroiditis (LT) was studied. ThyApp quantitation of PD-L1 expression revealed a significant difference between invasive EFVPTC and NIFTP; but none between NIFTP and benign nodules. ThyApp integrated with hotspot nucleus tumor sampling method demonstrated to be most clinically relevant, consumed least processing time, and eliminated interobserver variance. In conclusion, the fully automatic DIA algorithm developed using a histomorphological approach objectively quantitated PD-L1 expression in encapsulated thyroid neoplasms and outperformed manual scoring in reproducibility and higher efficiency.

4.
Biotechnol Prog ; 31(2): 482-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25582867

RESUMEN

Methods that increase cardiomyocyte survival upon exposure to ischemia, hypoxia and reoxygenation injuries are required to improve the efficacy of cardiac cell therapy and enhance the viability and function of engineered tissues. We investigated the effect of combined hypoxia/NaNO2 pretreatment on rat neonatal cardiomyocyte (CM), cardiac fibroblast, and human embryonic stem cell-derived CM (hESC-CM) survival upon exposure to hypoxia/reoxygenation (H/R) injury in vitro. Cells were pretreated with and without hypoxia and/or various concentrations of NaNO2 for 20 min, then incubated for 2 h under hypoxic conditions, followed by 2 h in normoxia. The control cells were maintained under normoxia for 4 h. Pretreatment with either hypoxia or NaNO2 significantly increased CM viability but had no effect on cardiac fibroblast viability. Combined hypoxia/NaNO2 pretreatment significantly increased CM viability but significantly decreased cardiac fibroblast viability. In rat neonatal CMs, cell death, as determined by lactate dehydrogenase (LDH) activity, was significantly reduced with hypoxia/NaNO2 pretreatment; and in hESC-CMs, hypoxia/NaNO2 pretreatment increased the BCL-2/BAX gene expression ratio, suggesting that hypoxia/NaNO2 pretreatment promotes cell viability by downregulating apoptosis. Additionally, we found a correlation between the prosurvival effect of hypoxia/NaNO2 pretreatment and the myoglobin content of the cells by comparing neonatal rat ventricular and atrial CMs, which express high and low myoglobin respectively. Functionally, hypoxia/NaNO2 pretreatment significantly improved the excitation threshold upon H/R injury to the level observed for uninjured cells, whereas pretreatment did not affect the maximum capture rate. Hence, hypoxia/NaNO2 pretreatment may serve as a strategy to increase CM survival in cardiac regenerative therapy applications and tissue engineering.


Asunto(s)
Hipoxia de la Célula/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Nitrito de Sodio/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Células Madre Embrionarias , Humanos , Mioglobina/metabolismo , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos
5.
Biomicrofluidics ; 7(1): 14110, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24404002

RESUMEN

The majority of available cardiomyocyte markers are intercellular proteins, limiting our ability to enrich live cardiomyocytes from heterogeneous cell preparations in the absence of genetic labeling. Here, we describe enrichment of live cardiomyocytes from the hearts of adult mice in a label-free microfluidic approach. The separation device consisted of a vertical column (15 mm long, 700 µm diameter), placed between permanent magnets resulting in a field strength of 1.23 T. To concentrate the field at the column wall, the column was wrapped with 69 µm diameter nickel wire. Before passing the cells through the column, the cardiomyocytes in the cell suspension had been rendered paramagnetic by treatment of the adult mouse heart cell preparation with sodium nitrite (2.5 mM) for 20 min on ice. The cell suspension was loaded into the vertical column from the top and upon settling, the non-myocytes were removed by the upward flow from the column. The cardiomyocytes were then collected from the column by applying a higher flow rate (144 µl/min). We found that by applying a separation flow rate of 4.2 µl/min in the first step, we can enrich live adult cardiomyocytes to 93% ± 2% in a label-free manner. The cardiomyocytes maintained viability immediately after separation and upon 24 h in culture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA