Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982384

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a major contributor to cancer incidence globally and is currently managed by surgical resection followed by adjuvant chemoradiotherapy. However, local recurrence is the major cause of mortality, indicating the emergence of drug-tolerant persister cells. A specific histone demethylase, namely lysine-specific demethylase 5D (KDM5D), is overexpressed in diverse types of cancers and involved in cancer cell cycle regulation. However, the role of KDM5D in the development of cisplatin-tolerant persister cells remains unexplored. Here, we demonstrated that KDM5D contributes to the development of persister cells. Aurora Kinase B (AURKB) disruption affected the vulnerability of persister cells in a mitotic catastrophe-dependent manner. Comprehensive in silico, in vitro, and in vivo experiments were performed. KDM5D expression was upregulated in HNSCC tumor cells, cancer stem cells, and cisplatin-resistant cells with biologically distinct signaling alterations. In an HNSCC cohort, high KDM5D expression was associated with a poor response to platinum treatment and early disease recurrence. KDM5D knockdown reduced the tolerance of persister cells to platinum agents and caused marked cell cycle deregulation, including the loss of DNA damage prevention, and abnormal mitosis-enhanced cell cycle arrest. By modulating mRNA levels of AURKB, KDM5D promoted the generation of platinum-tolerant persister cells in vitro, leading to the identification of the KDM5D/AURKB axis, which regulates cancer stemness and drug tolerance of HNSCC. Treatment with an AURKB inhibitor, namely barasertib, resulted in a lethal consequence of mitotic catastrophe in HNSCC persister cells. The cotreatment of cisplatin and barasertib suppressed tumor growth in the tumor mouse model. Thus, KDM5D might be involved in the development of persister cells, and AURKB disruption can overcome tolerance to platinum treatment in HNSCC.


Asunto(s)
Cisplatino , Neoplasias de Cabeza y Cuello , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Cisplatino/farmacología , Platino (Metal) , Histona Demetilasas/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139175

RESUMEN

Oral squamous cell carcinoma (OSCC) is a prevalent type of oral cancer. While therapeutic innovations have made strides, radioresistance persists as a significant hindrance in OSCC treatment. Despite identifying numerous targets that could potentially suppress the oncogenic attributes of OSCC, the exploration of oncogenic protein kinases for cancer therapy remains limited. Consequently, the functions of many kinase proteins in OSCC continue to be largely undetermined. In this research, we aim to disclose protein kinases that target OSCC and elaborate their roles and molecular mechanisms. Through the examination of the kinome library of radiotherapy-resistant/sensitive OSCC cell lines (HN12 and SAS), we identified a key gene, the tyrosine phosphorylation-regulated kinase 3 (DYRK3), a member of the DYRK family. We developed an in vitro cell model, composed of radiation-resistant OSCC, to scrutinize the clinical implications and contributions of DYRK3 and phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS) signaling in OSCC. This investigation involves bioinformatics and human tissue arrays. We seek to comprehend the role of DYRK3 and PAICS signaling in the development of OSCC and its resistance to radiotherapy. Various in vitro assays are utilized to reveal the essential molecular mechanism behind radiotherapy resistance in connection with the DYRK3 and PAICS interaction. In our study, we quantified the concentrations of DYRK3 and PAICS proteins and tracked the expression levels of key pluripotency markers, particularly PPAT. Furthermore, we extended our investigation to include an analysis of Glut-1, a gene recognized for its linkage to radioresistance in oral squamous cell carcinoma (OSCC). Furthermore, we conducted an in vivo study to affirm the impact of DYRK3 and PAICS on tumor growth and radiotherapy resistance, focusing particularly on the role of DYRK3 in the radiotherapy resistance pathway. This focus leads us to identify new therapeutic agents that can combat radiotherapy resistance by inhibiting DYRK3 (GSK-626616). Our in vitro models showed that inhibiting PAICS disrupts purinosome formation and influences the survival rate of radiation-resistant OSCC cell lines. These outcomes underscore the pivotal role of the DYRK3/PAICS axis in directing OSCC radiotherapy resistance pathways and, as a result, influencing OSCC progression or therapy resistance. Our findings also reveal a significant correlation between DYRK3 expression and the PAICS enzyme in OSCC radiotherapy resistance.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/radioterapia , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Toxicol Appl Pharmacol ; 424: 115581, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34019859

RESUMEN

Oral squamous cell carcinoma (OSCC) is among the most prevalent cancers of the head and neck. This study revealed that isoorientin attenuates OSCC cell stemness and epithelial-mesenchymal transition potential through the inhibition of JAK/signal transducer and activator of transcription 3 (STAT3) and Wnt/ß-catenin signaling in cell lines. Our findings indicated that isoorientin is a potential inhibitor of ß-catenin/STAT3 in vitro and in vivo. We analyzed possible synergism between isoorientin and cisplatin in OSCC. A sulforhodamine B assay, colony formation assay, tumorsphere-formation assay, and Wnt reporter activity assay were used for determining cell invasion, cell migration, drug cytotoxicity, and cell viability with potential molecular mechanisms in vitro. Isoorientin reduced the expression of p-STAT3, ß-catenin, and p-GSK3 as well as downstream effectors TCF1/TCF7 and LEF1 and significantly reduced ß-catenin colocalization in the nucleus. Isoorientin markedly strengthened the cytotoxic effects of cisplatin against SAS and SCC-25. Therefore, combining isoorientin and cisplatin treatments can potentially improve the anticancer effect of cisplatin. Isoorientin inhibited the tumorigenicity and growth of OSCC through the abrogation of Wnt/ß-catenin/STAT3 signaling in vivo. Thus, isoorientin disrupted the ß-catenin signaling pathway through the inactivation of STAT3 signaling. In conclusion, targeting OSCC-SC-mediated stemness with isoorientin to eradicate OSCC-SCs may be an effective strategy for preventing relapse and metastasis of OSCC and providing long-term survival benefits.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Luteolina/farmacología , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Luteolina/administración & dosificación , Luteolina/química , Ratones , Estructura Molecular , Neoplasias Experimentales , Células Madre Neoplásicas , Interferencia de ARN , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
Aging (Albany NY) ; 16(1): 627-647, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38206305

RESUMEN

BACKGROUND: Research has demonstrated that some tumor cells can transform into drug-tolerant persisters (DTPs), which serve as a reservoir for the recurrence of the disease. The persister state in cancer cells arises due to temporary molecular reprogramming, and exploring the genetic composition and microenvironment during the development of head and neck squamous cell carcinoma (HNSCC) can enhance our comprehension of the types of cell death that HNSCC, thus identifying potential targets for innovative therapies. This project investigated lipid-metabolism-driven ferroptosis and its role in drug resistance and DTP generation in HNSCC. METHODS: High levels of FSP1 were discovered in the tissues of patients who experienced relapse after cisplatin treatment. RNA sequencing indicated that a series of genes related to lipid metabolism were also highly expressed in tissues from these patients. Consistent results were obtained in primary DTP cells isolated from patients who experienced relapse. The Cancer Genome Atlas database confirmed this finding. This revealed that the activation of drug resistance in cancer cells is influenced by FSP1, intracellular iron homeostasis, and lipid metabolism. The regulatory roles of ferroptosis suppressor protein 1 (FSP1) in HNSCC metabolic regulation were investigated. RESULTS: We generated human oral squamous cell carcinoma DTP cells (HNSCC cell line) to cisplatin and observed higher expression of FSP1 and lipid-metabolism-related targets in vitro. The shFSP1 blockade attenuated HNSCC-DTP cell stemness and downregulated tumor invasion and the metastatic rate. We found that cisplatin induced FSP1/ACSL4 axis expression in HNSC-DTPC cells. Finally, we evaluated the HNSCC CSC-inhibitory functions of iFSP1 (a metabolic drug and ferroptosis inducer) used for neo-adjuvant chemotherapy; this was achieved by inducing ferroptosis in a patient-derived xenograft mouse model. CONCLUSIONS: The present findings elucidate the link between iron homeostasis, ferroptosis, and cancer metabolism in HNSCC-DTP generation and acquisition of chemoresistance. The findings may serve as a suitable model for cancer treatment testing and prediction of precision treatment outcomes. In conclusion, this study provides clinically oriented platforms for evaluating metabolism-modulating drugs (FSP1 inhibitors) and new drug candidates of drug resistance and ferroptotic biomarkers.


Asunto(s)
Carcinoma de Células Escamosas , Ferroptosis , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Ferroptosis/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Homeostasis , Hierro/uso terapéutico , Metabolismo de los Lípidos , Lípidos , Recurrencia Local de Neoplasia , Recurrencia , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral
5.
Aging (Albany NY) ; 16(3): 2679-2701, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305803

RESUMEN

Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Ácido Tióctico/análogos & derivados , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Sunitinib/farmacología , Sunitinib/uso terapéutico , Cobre , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Apoptosis
6.
Life Sci ; 351: 122764, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838817

RESUMEN

The discovery of SARS-CoV-2 RNA in the periodontal tissues of patients who tested positive for COVID-19, 24 days post the initial symptom onset, indicates the oral cavity could serve as a viral reservoir. This research aims to investigate the antiviral capabilities of Ovatodiolide, introducing a novel periodontal ligament organoid model for the study of SARS-CoV-2. We have successfully established a reliable and expandable organoid culture from the human periodontal ligament, showcasing characteristics typical of epithelial stem cells. This organoid model enables us to delve into the lesser-known aspects of dental epithelial stem cell biology and their interactions with viruses and oral tissues. We conducted a series of in vitro and ex vivo studies to examine the inhibitory impacts of Ova on SARS-CoV-2. Our findings indicate that Ovatodiolide molecules can bind effectively to the NRP1 active domain. Our study identifies potential interaction sites for Ovatodiolide (OVA) within the b1 domain of the NRP1 receptor. We generated point mutations at this site, resulting in three variants: Y25A, T44A, and a double mutation Y25A/T44A. While these mutations did not alter the binding activity of the spike protein, they did impact the concentration of OVA required for inhibition. The inhibitory concentrations for these variants are 15 µM for Y25A, 15.2 µM for T44A, and 25 µM for the double mutant Y25A/T44A. In addition, in vitro inhibition experiments demonstrate that the EC50 of Ova against the main protease (Mpro) of the SARS-CoV-2 virus is 7.316 µM. Our in vitro studies and the use of the periodontal ligament organoid model highlight Ovatodiolide's potential as a small molecule therapeutic agent that impedes the virus's ability to bind to the Neuropilin-1 receptor on host cells. The research uncovers various pathways and biochemical strategies through which Ovatodiolide may function as an effective antiviral small molecule drug.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Neuropilina-1 , Organoides , Ligamento Periodontal , SARS-CoV-2 , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/virología , Humanos , Organoides/virología , Organoides/metabolismo , Organoides/efectos de los fármacos , Neuropilina-1/metabolismo , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/virología , Diterpenos/farmacología
7.
Chem Biol Interact ; 395: 111004, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38636790

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) faces low response rates to anti-PD-1 immunotherapies, highlighting the need for enhanced treatment strategies. Auranofin, which inhibits thioredoxin reductase (TrxR) through its gold-based composition, has shown potential in cancer treatment. It targets the TrxR system, essential for safeguarding cells from oxidative stress. The overproduction of TrxR in cancerous cells supports their proliferation. However, auranofin's interference with this system can upset the cellular redox equilibrium, boost levels of reactive oxygen species, and trigger the death of cancer cells. This study is the first to highlight TXNRD1 as a crucial factor contributing to resistance to anti-PD-1 treatment in HNSCC. In this study, we identified targetable regulators of resistance to immunotherapy-induced ferroptosis in HNSCC. We observed a link of thioredoxin reductase 1 (TXNRD1) with tumoral PD-L1 expression and ferroptosis suppression in HNSCC. Moreover, HNSCC tumors with aberrant TXNRD1 expression exhibited a lack of PD-1 response, NRF2 overexpression, and PD-L1 upregulation. TXNRD1 inhibition promoted ferroptosis in HNSCC cells with NRF2 activation and in organoid tumors derived from patients lacking a PD-1 response. Mechanistically, TXNRD1 regulated PD-L1 transcription and maintained the redox balance by binding to ribonucleotide reductase regulatory subunit M2 (RRM2). TXNRD1 expression disruption sensitized HNSCC cells to anti-PD-1-mediated Jurkat T-cell activation, promoting tumor killing through ferroptosis. Moreover, TXNRD1 inhibition through auranofin cotreatment synergized with anti-PD-1 therapy to potentiate immunotherapy-mediated ferroptosis by mediating CD8+ T-cell infiltration and downregulating PD-L1 expression. Our findings indicate that targeting TXNRD1 is a promising therapeutic strategy for improving immunotherapy outcomes in patients with HNSCC.


Asunto(s)
Auranofina , Antígeno B7-H1 , Ferroptosis , Neoplasias de Cabeza y Cuello , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Ferroptosis/efectos de los fármacos , Auranofina/farmacología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Phytomedicine ; 108: 154478, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36265255

RESUMEN

Activation of mitogen-activated protein kinase (MAPK) and PI3K signaling confers resistance against sorafenib, a mainstay treatment for advanced hepatocellular carcinoma (HCC). Antrocin and ovatodiolide constitute as the most potent secondary metabolites isolated from Antrodia camphorata and Anisomeles indica, respectively. Both natural compounds have recently gained a lot of attention due to their putative inhibition of MAPK and PI3K signaling in various solid cancers. However, whether their combination is effective in HCC remains unknown. Here, we investigated their effect, alone or in various combinations, on MAPK and PI3K signaling pathways in HCC cells. An array of in vitro study were used to investigate anticancer and stemness effects to treat HCC, such as cytotoxicity, drug combination index, migration, invasion, colony formation, and tumor sphere formation. Drug effect in vivo was evaluated using mouse xenograft models. In this study, antrocin and ovatodiolide synergistically inhibited the SNU387, Hep3B, Mahlavu, and Huh7 cell lines. Sequential combination treatment of Huh7 and Mahlavu with ovatodiolide followed by antrocin resulted stronger cytotoxic effect than did treatment with antrocin followed by ovatodiolide, their simultaneous administration, antrocin alone, or ovatodiolide alone. In the Huh7 and Mahlavu cell lines, ovatodiolide→antrocin significantly suppressed colony formation and proliferation as well as markedly downregulated ERK1/2, Akt, and mTOR expression. Inhibition of ERK1/2 and Akt/mTOR signaling by ovatodiolide→antrocin suppressed ribosomal biogenesis, autophagy, and cancer stem cell-like phenotypes and promoted apoptosis in Huh7 and Mahlavu cells. The sorafenib-resistant clone of Huh7 was effectively inhibited by synergistic combination of both compound in vitro. Eventually, the ovatodiolide→antrocin combination synergistically suppressed the growth of HCC xenografts. Taken together, our findings suggested that ovatodiolide→antrocin combination may represent potential therapeutic approach for patients with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Animales , Humanos , Ratones , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , Sorafenib , Serina-Treonina Quinasas TOR/metabolismo , Lactonas/farmacología , Diterpenos/farmacología , Sesquiterpenos/farmacología , Células Madre Neoplásicas/efectos de los fármacos
9.
Aging (Albany NY) ; 14(12): 5250-5270, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35771152

RESUMEN

The exact mechanisms of Head and neck squamous carcinoma (HNSCC) chemoresistance and metastatic transformation remain unclear. In recent decades, members of the transient receptor potential (TRP) channel family have been proposed as potential biomarkers and/or drug targets in cancer treatment. First, in a TCGA cohort of HNSCC, TRPM7 is highly expressed in cancer tissues, especially the expression in invasive cancer tissues is statistically significant (p>0.001). In GEO and TCGA cohort, patients with high expression of TRPM7 and NFATC2 have poor overall survival rates. The expression of TRPM7 and NFATC2 showed a positive correlation. Compared to human normal oral keratinocytes (hNOK), TRPM7 is overexpressed in FaDU, SAS, and TW2.6 cell lines. Similarly, patients with HNSCC exhibited higher TRPM7 expression than non-HNSCC subjects, and this high TRPM7 expression was associated with worse 5-year overall survival. Furthermore, TRPM7 inversely correlated with E-cadherin, but positively correlated with Vimentin, NANOG, and BMI-1 mRNA levels. Consistent with this, we demonstrated the overexpression of TRPM7 in cisplatin-resistant subjects, compared to the cisplatin-sensitive counterparts. Moreover, shRNA-mediated silencing of TRPM7 significantly suppressed the migration, invasion, colony formation, and tumorsphere formation of SAS cells, with associated downregulation of Snail, c-Myc, cyclin D1, SOX2, OCT4, and NANOG proteins expression. Finally, compared with the untreated wild-type SAS cells or cisplatin-treated cells, shTRPM7 alone or in combination with cisplatin significantly inhibited tumorsphere and colony formation. These findings serving as the basis for development of novel therapeutic strategies against metastasis and chemoresistance, while providing new insights into TRPM7 biology and activity in HNSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Canales Catiónicos TRPM , Calcineurina/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Factores de Transcripción NFATC/metabolismo , Proteínas Serina-Treonina Quinasas , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Factores de Transcripción/metabolismo
10.
Phytomedicine ; 100: 154062, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366491

RESUMEN

BACKGROUND: The current standard therapy for metastatic pancreatic cancer is ineffective, necessitating a new treatment approach for prognosis improvement. The urokinase-plasmin activator (uPA) is a critical factor in epithelial-mesenchymal transition (EMT) and cancer metastasis, but its underlying mechanisms in pancreatic cancer remains elusive. METHODS: We investigated uPA expression in our pancreatic cancer cohort. A bioinformatics approach was used to further determine the role of uPA in pancreatic cancer. We employed MiaPaCa-2 and PANC-1 cell lines to investigate how uPA regulates EMT and metastasis in pancreatic cancer and present a novel approach aimed at inhibiting uPA in pancreatic cancer. RESULTS: We observed that higher uPA mRNA expression was significantly associated with overall-poor survival and progression-free survival in pancreatic cancer. uPA was highly expressed in tumor tissue. Gene set enrichment analysis revealed a positive association between uPA mRNA expression and EMT and transforming growth factor ß (TGF-ß) signaling pathways. Moreover, shRNA-mediated uPA gene knockdown reduced plasmin, MMP14, and TGF-ß activation, leading to the inhibition of PANC-1 cells' EMT marker expression, migration, invasion, and cell viability. Notably, 4-acetyl-antroquinonol B (4-AAQB) treatment suppressed MiaPaCa-2 and PANC-1 cell migratory and invasive abilities by inhibiting the uPA/MMP14/TGF-ß axis through upregulation of miR-181d-5p. In the xenograft mouse model of orthotropic pancreatic cancer, 4-AAQB treatment has reduced tumor growth and metastasis rate by deactivating uPA and improving the survival of the mice model. CONCLUSION: Accordingly, to extent of our knowledge and previous studies, we demonstrated that 4-AAQB is an anti Pan-Cancer drug, and may inhibit pancreatic cancer EMT and metastasis and serve as a new therapeutic approach for patients with late-stage pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Activador de Plasminógeno de Tipo Uroquinasa , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Fibrinolisina/farmacología , Humanos , Metaloproteinasa 14 de la Matriz/farmacología , Ratones , Neoplasias Pancreáticas/patología , ARN Mensajero , Factor de Crecimiento Transformador beta/metabolismo , Ubiquinona/análogos & derivados , Activador de Plasminógeno de Tipo Uroquinasa/genética , Neoplasias Pancreáticas
11.
Dis Markers ; 2022: 8446629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903297

RESUMEN

Background: Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress. Circulating exosomes play critical roles in tumorigenesis, distant metastasis, and poor prognosis in patients with breast cancer. Methods: We used an online database to analyze the expression and prognostic value of core binding factor subunit ß (CBFB) and oxidative stress-related targets in patients with breast cancer. Serum from healthy controls and patients with primary breast cancer or bone metastatic breast cancer in the bone was collected. Exosomes were isolated from the sera or cell culture media. We used an MDA-MB-436-innoculated tumor xenograft mouse model for silencing CBFB. Results: Circulating exosomes from patients with breast cancer metastasis to the bone were rich in CBFB. The human mammary fibroblast cells HMF3A and fibroblasts derived from patient samples cocultured with exosomes had increased α-SMA and vimentin expression and IL-6 and OPN secretion. Similarly, nonmetastatic breast cancer cells cocultured with exosomes exhibited increased levels of certain markers, including vimentin, snail1, CXCR4, and Runx2, and the exosomes had high CBFB expression. Silencing CBFB in metastatic MDA-MB-436 and MDA-MB-157 cells resulted in suppressed migration and invasion and downregulation of vimentin, CXCR4, snail1, Runx2, CD44, and OPN. Conversely, CBFB overexpression resulted in upregulation of Runx2, vimentin, snail1, CD44, and OPN in nonmetastatic T47D and MCF12A cells. The CBFB-rich exosomes derived from MDA-MB-436 cells induced enhanced metastatic phenotypes in the low-metastatic T47D and MCF12A cell lines. Conclusion: Our results revealed that CBFB may promote bone metastasis in patients with breast cancer. Of therapeutic relevance, targeting CBFB resulted in decreased tumor burden and bone metastasis, downregulation of bone metastasis markers, and impaired regulation of oxidative stress-related proteins NAE1 and NOS1.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Femenino , Humanos , Ratones , Estrés Oxidativo , Fenotipo , Vimentina/genética
12.
Oncogenesis ; 10(2): 20, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33640903

RESUMEN

Locally advanced oral squamous cell carcinoma (OSCC) requires multimodal therapy, including surgery and concurrent chemoradiotherapy (CCRT). CCRT-resistant and recurrent cancer has a poor prognosis. We investigated the effects of Bruton's tyrosine kinase (BTK) on CCRT-resistant OSCC tissues. The effect of ibrutinib, a first-in-class BTK inhibitor, was tested on stem cell-like OSCC tumorspheres. A tissue array was constructed using tissue samples from 70 patients with OSCC. Human OSCC cell lines, SAS, TW2.6 and HSC-3, were examined. Wound healing, Matrigel invasion, and tumorsphere formation assays, as well as immunofluorescence analysis and flow cytometry, were used to investigate the effects of BTK knockdown (shBTK), ibrutinib, cisplatin, and ibrutinib/cisplatin combination on OSCC cells. We demonstrated that BTK was aberrantly highly expressed in the clinical CCRT-resistant OSCC tissue array, which resulted in poor overall survival in our local Tri-Service General Hospital and freely accessible TCGA OSCC cohorts. shBTK significantly downregulated the stemness markers Nanog, CD133, T cell immunoglobulin-3 (TIM-3), and Krüppel-like factor 4 (KLF4) in SAS tumorspheres and attenuated OSCC cell migration and colony formation. Ibrutinib reduced the number of aldehyde dehydrogenase (ALDH)-rich OSCC cells and reduced tumorsphere formation, migration, and invasion in a dose-dependent manner. Compared with ibrutinib or cisplatin monotherapy, the ibrutinib/cisplatin combination significantly reduced the formation of ALDH + OSCC tumorspheres and enhanced apoptosis. These results demonstrate that ibrutinib effectively inhibits the CSCs-like phenotype of OSCC cells through dysregulation of BTK/CD133 signaling. The ibrutinib/cisplatin combination may be considered for future clinical use.

13.
Cancers (Basel) ; 13(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885115

RESUMEN

BACKGROUND: The third-generation epidermal growth factor receptor (EGFR) inhibitor, Osimertinib, is used to treat non-small cell lung cancer (NSCLC) patients with tyrosine kinase inhibitor (TKI) resistance caused by acquired EGFR T790M mutation. However, patients eventually develop resistance against Osimertinib with mechanisms not yet fully clarified. Activated alternative survival pathways within the tumor cells and cancer-associated fibroblasts (CAFs) have been proposed to contribute to Osimertinib resistance. MET and MEK inhibitors may overcome EGFR-independent resistance. Another acquired resistance mechanism of EGFR-TKI is the up-regulation of the RAS/RAF/MEK/ERK signaling pathway, which is the key to cell survival and proliferation; this may occur downstream of various other signaling pathways. In this report, we reveal the possible regulatory mechanism and inhibitory effect of the MEK inhibitor trametinib applied to MEK/ERK/miR-21 axis and PDCD4 in Osimertinib resistance. We found a possible regulatory role of PDCD4 in ERK signaling. PDCD4 is a new type of tumor suppressor that has multiple functions of inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. Previous bioinformatics analysis has confirmed that PDCD4 contains the binding site of miR-21 and acts as a tumor suppressor in the regulation of various processes associated with the development of cancer, including cell proliferation, invasion, metastasis, and neoplastic transformation. Based on the above analysis, we hypothesized that the tumor suppressor PDCD4 is one of the effective inhibitory targets of miR-21-5p. METHODS: The expression between EGFR and ERK2 in lung adenocarcinoma was evaluated from the TCGA database. Osimertinib-sensitive and resistant NSCLC cells obtained from patients were used to co-culture with human lung fibroblasts (HLFs) to generate CAF cells (termed CAF_R1 and CAF_S1), and the functional roles of these CAF cells plus the regulatory mechanisms were further explored. Then, MEK inhibitor Trametinib with or without Osimertinib was applied in xenograft model derived from patients to validate the effects on growth inhibition of Osimertinib-resistant NSCLC tumors. RESULT: ERK2 expression correlated with EGFR expression and higher ERK2 level was associated with worse prognosis of patients and Osimertinib resistance. CAFs derived from Osimertinib-resistant cells secreted more IL-6, IL-8, and hepatocyte growth factor (HGF), expressed stronger CAF markers including α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP) plus platelet-derived growth factor receptor (PDGFR), and enhanced stemness and Osimertinib resistance in NSCLC cells. Meanwhile, increased MEK/ERK/miR-21 expressions were found in both CAFs and NSCLC cells. MEK inhibitor Trametinib significantly abrogated the abovementioned effects by modulating ß-catenin, STAT3, and ERK. The xenograft model showed combining Osimertinib and Trametinib resulted in the most prominent growth inhibition of Osimertinib-resistant NSCLC tumors. CONCLUSIONS: Our results suggested that MEK/ERK/miR-21 signaling is critical in Osimertinib resistance and CAF transformation of NSCLC cells, and MEK inhibitor Trametinib significantly suppressed Osimertinib-resistant NSCLC tumor growth by abolishing both processes.

14.
Oxid Med Cell Longev ; 2021: 9959807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336125

RESUMEN

BACKGROUND: Treating advanced colon cancer remains challenging in clinical settings because of the development of drug resistance and distant metastasis. Mechanisms underlying the metastasis of colon cancer are complex and unclear. METHODS: Computational analysis was performed to determine genes associated with the exosomal long noncoding (lncRNA) plasmacytoma variant translocation 1 (PVT1)/vascular endothelial growth factor A (VEGFA) axis in patients with colon cancer. The biological importance of the exosomal lncRNA PVT1/VEGFA axis was examined in vitro by using HCT116 and LoVo cell lines and in vivo by using a patient-derived xenograft (PDX) mouse model through knockdown (by silencing of PVT1) and overexpression (by adding serum exosomes isolated from patients with distant metastasis (M-exo)). RESULTS: The in silico analysis demonstrated that PVT1 overexpression was associated with poor prognosis and increased expression of metastatic markers such as VEGFA and epidermal growth factor receptor (EGFR). This finding was further validated in a small cohort of patients with colon cancer in whom increased PVT1 expression was correlated with colon cancer incidence, disease recurrence, and distant metastasis. M-exo were enriched with PVT1 and VEGFA, and both migratory and invasive abilities of colon cancer cell lines increased when they were cocultured with M-exo. The metastasis-promoting effect was accompanied by increased expression of Twist1, vimentin, and MMP2. M-exo promoted metastasis in PDX mice. In vitro silencing of PVT1 reduced colon tumorigenic properties including migratory, invasive, colony forming, and tumorsphere generation abilities. Further analysis revealed that PVT1, VEGFA, and EGFR interact with and are regulated by miR-152-3p. Increased miR-152-3p expression reduced tumorigenesis, where increased tumorigenesis was observed when miR-152-3p expression was downregulated. CONCLUSION: Exosomal PVT1 promotes colon cancer metastasis through its association with EGFR and VEGFA expression. miR-152-3p targets both PVT1 and VEGFA, and this regulatory pathway can be explored for drug development and as a prognostic biomarker.


Asunto(s)
Neoplasias del Colon/genética , Exosomas/metabolismo , Genes Supresores de Tumor/fisiología , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Transducción de Señal , Transfección
15.
Cancers (Basel) ; 13(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199353

RESUMEN

BACKGROUND: Hepatitis virus is a major risk factor for liver cancer. The mitochondrial dysfunction IFN gamma-related pathways are activated after virus infection. Jak family-related protein is involved in the downstream of IFN gamma-related pathways. However, the effect of the IFNGR-JAK-STAT pathway acting as functional regulators of their related protein expression on virus infection and hepatocellular carcinoma (HCC) remains unclear. Interestingly, the role of the DNA repair gene (PARP1) in therapy resistant cancers also has not been studied and explored well. In this study, we hypothesized that momelotinib could suppress the progression of HCC by targeting Jak family related and PARP1 DNA repair protein. Based on this observation, we link the relevant targets of the JAK family and the potential applications of targeted therapy inhibitors. METHODS: We analyzed possible synergism between momelotinib and sorafenib in hepatitis virus-associated liver cancer. Immunostaining, colony formation assay, cell invasion, migration, and tumorsphere-formation assay were used for drug cytotoxicity, cell viability, and possible molecular mechanism. RESULT: We first demonstrated that the expression of Jak1 and 2 is significantly upregulated in vHCC than in nvHCC/normal liver tissues. In addition, the gene expression of IFN gamma-related pathways is activated after virus infection. Additionally, we found that momelotinib significantly inhibited the growth of HCC cells and reduces the expression of Jak2, which showed the importance of momelotinib in targeting Jak2 and reducing tumorigenesis in HCC. Meanwhile, momelotinib effectively inhibited the IFNGR-JAK-STAT pathway and reduced the migratory/invasive ability of vHCC cells through down-regulating EMT biomarkers (E-cadherin and vimentin), transcription factor (Slug), and significantly inhibits the DNA damage repair enzyme PARP1. It also induced cell apoptosis of vHCC cells. Furthermore, the combined effect of momelotinib and sorafenib both at in vitro and in vivo synergistically suppresses the proliferation of vHCC cells and effectively reduces the tumor burden. CONCLUSIONS: Our results showed that momelotinib effectively suppressed the expression of the IFNGR-JAK-STAT-PARP1 pathway, which results in the downregulation of cancer stem cell genes and enhances the antitumor efficacy of sorafenib by initiating the expression of apoptosis-related genes and inhibiting the DNA repair gene in vHCC cells, thus maximizing its therapeutic potential for patients with HCC.

16.
Virus Res ; 265: 132-137, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926385

RESUMEN

In our previous study, we produced a monoclonal antibody EB2 that recognized an epitope in the HA1 domain on the hemagglutinin (HA) of H6N1 influenza virus (A/chicken/Taiwan/2838 V/00). The residue Arg-201 (R201) on this epitope was protected by the glycan at Asn-167 (N167) from tryptic digestion; therefore, the infectivity of the virus was retained. R201 was extremely conserved in various subtypes of the influenza virus. To explore the role of R201 and the protecting glycan, we developed a bi-cistronic baculovirus expression system for the production of H6HA1 and H6HA0 (nearly full-length HA), which were glycosylated in insect cells. The expressed H6HA1 was mostly found in the trimeric form, and the H6HA0 protein was only found in the monomeric form. The trimeric H6HA1 was resistant to tryptic digestion; however, it could not bind to fetuin, a glycoprotein containing sialylated N-linked and O-linked glycans. By contrast, the monomeric H6HA0 could bind to fetuin but was sensitive to tryptic digestion. We found that the positive charge on R201 was critical for binding HA to the negatively charged surface of host cells because the mutant R201A of H6HA0 lost its binding capacity substantially. Moreover, this binding capacity was dependent on the pH value and inhibited by free electrically charged amino acids. We propose a two-step model for binding the influenza virus with a host cell. The first step involved the specific recognition of the receptor binding site on HA to the sialylated glycan on the host cell. After the virus is engulfed by the acidic endosome, R201 could bind to the cell surface with stronger interactions and trigger the fusion process.


Asunto(s)
Arginina/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Interacciones Microbiota-Huesped , Virus de la Influenza A/fisiología , Internalización del Virus , Animales , Anticuerpos Monoclonales/inmunología , Baculoviridae/genética , Sitios de Unión , Pollos , Epítopos/inmunología , Glicosilación , Gripe Aviar/virología , Polisacáridos/inmunología
17.
J Immunol Methods ; 459: 81-89, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29894745

RESUMEN

A bi-cistronic baculovirus expression vector was constructed to facilitate the expression, detection, and isolation of the hemagglutinin (HA) fragment HA1 of H6N1 avian influenza virus (AIV) in an insect and a culture of its cells. In this construct, the GP67sp signal peptide promoted the secretion of the recombinant protein into the culture medium, and improved protein expression and purification. Enhanced green fluorescent protein, co-expressed through an internal ribosome entry site, served as a visible reporter for protein expression detection. The hemolymph of Spodoptera litura larvae infected with the bi-cistronic baculovirus was collected for the purification of the recombinant HA1, which was found to be glycosylated, and monomeric and trimeric forms of the recombinant HA1 were identified. Proteins expressed in both the cell culture and larvae served as effective subunit vaccines for the production of antiserum against HA. The antiserum recognized the H6 subtype of AIV but not the H5 subtype.


Asunto(s)
Baculoviridae/genética , Vectores Genéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Animales , Línea Celular , Femenino , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/clasificación , Larva/virología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Spodoptera/citología , Spodoptera/virología
18.
Vet Microbiol ; 174(3-4): 333-341, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25465660

RESUMEN

Neutralizing antibodies on the globular head of the hemagglutinin (HA) of avian influenza virus (AIV) are crucial for controlling this disease. However, most neutralizing antibodies lack cross reaction. This report describes the identification of a hemagglutinin epitope on the globular head near the receptor binding site of the H6N1 AIV. A monoclonal antibody named EB2 was prepared against the H6N1 AIV HA. Flow cytometry of AIV-infected chicken embryo fibroblast, DF-1 cells and specific-pathogen-free embryonated eggs were used to verify the neutralizing activity of this mAb. To narrow down the binding region, partially overlapping HA fragments and synthetic peptides were used to map the epitope by immune-blotting. The linear motif RYVRMGTESMN, located on the surface on the globular head of the HA protein, was identified as the epitope bound by EB2 mAb. Alignment of the EB2-defined epitope with other H6 AIVs showed that this epitope was conserved and specific to H6. We propose that this motif is a linear B-cell epitope of the HA protein and is near the receptor binding site. The identified epitope might be useful for clinical applications and as a tool for further study of the structure and function of the AIV HA protein.


Asunto(s)
Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Pollos , Reacciones Cruzadas/inmunología , Epítopos de Linfocito B/inmunología , Óvulo/inmunología , Filogenia , Análisis de Secuencia de ADN
19.
J Immunol Methods ; 387(1-2): 43-50, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23022629

RESUMEN

This study established a novel method of pre-screening peptides for monoclonal antibody (mAb) production. Whole virus particles were used as antigens to produce mAbs in the first stage. However, most mAbs obtained from this method were aimed toward hemagglutinin. For this reason, synthetic peptides were used as antigens for mAb production that aimed at the AIV proteins with low abundance or poor immunogenicity in the virus particle. The peptides that showed high immunogenicity were designed using bioinformatic tools for immunization. For high-throughput, a rabbit was used to screen the immunogenicities of the synthetic peptides. Those showed high immunity were used for mAb preparation in mice. Several new mAbs against PB2, PA, M1, M2, NS1 and NS2 proteins were successfully obtained in this study. Furthermore, the epitopes of M1 and NS1 mAbs were determined using competitive western blot assay and competitive ELISA. This study might simplify the mAb preparation and serves as the basis for developing mAb against poor immunogenic proteins.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Virus de la Influenza A/inmunología , Proteínas Virales/inmunología , Secuencia de Aminoácidos , Animales , Antígenos Virales/inmunología , Western Blotting , Embrión de Pollo , Pollos/virología , Epítopos/inmunología , Epítopos/metabolismo , Inmunoensayo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Gripe Aviar/virología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA