Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433472

RESUMEN

In order to assess the impact of the Ms7.0 Jiuzhaigou earthquake that occurred on 8 August 2017 on vegetation, the Carnegie-Ames-Stanford Approach (CASA) model was adopted to estimate the vegetation net primary productivity (NPP) of Jiuzhaigou Valley, one of the World Heritage Sites, in July, August and September from 2015 to 2019. Then the characteristics of the impact of different earthquake-induced geohazards on vegetation were discussed, and a vulnerability-resilience assessment system concerning the seismic intensity was proposed. The results show that the NPPmax and NPPmean values in Jiuzhaigou Valley first decreased and then increased and were 151.5-261.9 gC/m2 and 54.6-116.3 gC/m2, respectively. The NPP value of more than 70% area was 90-150 gC/m2 in July. In August, the NPPmean values decreased, and the areas with lower values became larger; the NPPmean values of most areas affected by geohazards were 60-150 gC/m2. During the earthquake, the NPPmean values of areas hit by geohazards sharply declined by 27.2% (landslide), 22.4% (debris flow) and 15.7% (collapse) compared with those in the same month in 2016. Vegetation in debris flow zones showed a stronger recovery, with a maximum NPP value increase of about 23.0% in September 2017. The vegetation gradually recovered after the earthquake, as indicated by the uptrend of the NPP values in the corresponding period in 2018 and 2019. In general, the reduction magnitude of NPP values decreased year by year in comparison to that in 2015 and 2016, and the decrease slowed down after the earthquake. The vulnerability and resilience index corresponding to the three seismic intensity ranges were 0.470-0.669 and 0.642-0.693, respectively, and those of Jiuzhaigou Valley were 0.473 and 0.671, respectively. The impact coefficient defined to represent the impact of the earthquake on NPP was 0.146-0.213. This paper provides a theoretical reference and guidance for the impact assessment of earthquakes on the ecosystem.


Asunto(s)
Terremotos , Ecosistema , Modelos Teóricos
2.
Sci Total Environ ; 929: 172697, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657820

RESUMEN

River water temperature is important and closely related to river ecosystem, concerning fishery industry, human health, and the land-sea exchange of nutrients, especially for great powers with a good deal of heat emission from once-through cooling systems of thermal power plants. However, the changes in river water temperature under the joint action of climate change and human activity such as the heat emission have not been well investigated for rising powers, hampering environmental policy making for sustainable development. Therefore, we have taken advantage of a recently-developed land surface model including river water temperature calculation with anthropogenic thermal discharge and zonal statistics to quantitatively make out the river water temperature variation and the man-made influence over the past thirty years (1981-2010) in China for the first time. Results show that the estimated water temperature in major rivers is generally close to the observation with the r2 of 0.83, though the underestimation exists in some rivers. The river water in the Pearl River Basin was the warmest with the mean temperature of 19.2 °C and the others in order were in the Southeast Basin, the Huaihe River Basin, the Yangtze River Basin, the Haihe River Basin, the Yellow River Basin, the Southwest Basin, the Song-Liao River Basin, and the Continental Basin, ranging from 16.7 °C to 6.3 °C. The Huaihe River Basin had the fastest mean increase rate of ca. 0.27 °C decade-1, while the slowest mean increase rate of ca. 0.13 °C decade-1 existed in the Pearl River Basin. At the subbasin scale, a meridionally-distributed hot spot zone (along the 115°E) of the increasing water temperature has been identified, where the trends ranged from 0.2 °C decade-1 to 0.5 °C decade-1. Air temperature exerted a major control on the spatial pattern of climatological water temperature, while both air temperature and downwelling solar flux played a leading role in the distribution of water temperature change trends. Although anthropogenic thermal emission heated the rivers locally, the impacts in the Song-Liao River, the Haihe River, the Huaihe River, and the middle and lower reaches of Yellow River and Yangtze River had been raised up to ca. 4.5 °C, when comparing with those controlled by climate change only. In general, these results show an acceptable level of river water temperature simulation in the land surface model, and could provide a scientific reference for the assessment on riverine thermal environment under the climate change and social impact in China.

3.
Front Immunol ; 14: 1308807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259466

RESUMEN

Due to the therapeutic resistance of endocrine therapy and the limited efficacy of immune checkpoint inhibitors in estrogen receptor (ER)-positive breast cancer (BRCA), there is an urgent need to develop novel prognostic markers and understand the regulation of the tumor immune microenvironment (TIME). As a matricellular protein, CYR61 has been shown to either promote or suppress cancer progression depending on cancer types. However, how CYR61 functions in ER-positive BRCA remains elusive. In this study, we comprehensively analyzed the expression of CYR61 in BRCA based on the TCGA and METABRIC databases. Our findings showed that the expression of CYR61 is downregulated in different subtypes of BRCA, which is associated with elevated promoter methylation levels and predicts bad clinical outcomes. By comparing the high or low CYR61 expression groups of ER-positive BRCA patients, we found that CYR61 is intimately linked to the expression of genes involved in tumor-suppressive pathways, such as the TGF-ß and TNF signaling pathways, and genes related to cytokine-receptor interaction that may regulate cancer immunity. Moreover, reduced CYR61 expression is associated with an altered TIME that favors cancer progression. Finally, experimental analyses ascertained that CYR61 is downregulated in clinical BRCA tissues compared to matched normal breast tissues. Furthermore, CYR61 is able to impede the proliferation and colony formation of ER-positive BRCA cells. In summary, our study reveals that CYR61 could serve as a novel prognostic marker for ER-positive BRCA, and function as an inhibitor of cancer progression by both acting on cancer cells and remodeling the TIME.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Pronóstico , Mama , Citocinas , Receptores de Estrógenos , Microambiente Tumoral/genética
4.
Sci Rep ; 11(1): 15577, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341457

RESUMEN

Landslide dam outburst floods have a significant impact on landform evolution in high mountainous areas. Historic landslide dams on the Yigong River, southeastern Tibet, generated two outburst superfloods > 105 m3/s in 1902 and 2000 AD. One of the slackwater deposits, which was newly found immediately downstream of the historic dams, has been dated to 7 ka BP. The one-dimensional backwater stepwise method gives an estimate of 225,000 m3/s for the peak flow related to the paleo-stage indicator of 7 ka BP. The recurrence of at least three large landslide dam impoundments and super-outburst floods at the exit of Yigong Lake during the Holocene greatly changed the morphology of the Yigong River. More than 0.26 billion m3 of sediment has been aggraded in the dammed lake while the landslide sediment doubles the channel slope behind the dam. Repeated landslide damming may be a persistent source of outburst floods and impede the upstream migration of river knickpoints in the southeastern margin of Tibet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA