Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Emerg Infect Dis ; 29(7): 1425-1428, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347816

RESUMEN

Candida vulturna belongs to the Candida haemulonii species complex and is phylogenetically related to C. auris. We report a C. vulturna outbreak among persons in Shanxi Province, China, during 2019-2022. Isolates were resistant to multiple antifungal drugs and exhibited enhanced adhesion and biofilm formation properties.


Asunto(s)
Candida , Candidiasis , Candidiasis/epidemiología , Candidiasis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , China/epidemiología , Pruebas de Sensibilidad Microbiana
2.
Fungal Genet Biol ; 159: 103664, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026387

RESUMEN

The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.


Asunto(s)
Candida albicans , Genes del Tipo Sexual de los Hongos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes del Tipo Sexual de los Hongos/genética , Feromonas/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Reproducción
3.
PLoS Pathog ; 16(10): e1008921, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091071

RESUMEN

First described in 2009 in Japan, the emerging multidrug-resistant fungal pathogen Candida auris is becoming a worldwide public health threat that has been attracting considerable attention due to its rapid and widespread emergence over the past decade. The reasons behind the recent emergence of this fungus remain a mystery to date. Genetic analyses indicate that this fungal pathogen emerged simultaneously in several different continents, where 5 genetically distinct clades of C. auris were isolated from distinct geographical locations. Although C. auris belongs to the CTG clade (its constituent species translate the CTG codon as serine instead of leucine, as in the standard code), C. auris is a haploid fungal species that is more closely related to the haploid and often multidrug-resistant species Candida haemulonii and Candida lusitaniae and is distantly related to the diploid and clinically common fungal pathogens Candida albicans and Candida tropicalis. Infections and outbreaks caused by C. auris in hospitals settings have been rising over the past several years. Difficulty in its identification, multidrug resistance properties, evolution of virulence factors, associated high mortality rates in patients, and long-term survival on surfaces in the environment make C. auris particularly problematic in clinical settings. Here, we review progress made over the past decade on the biological and clinical aspects of C. auris. Future efforts should be directed toward understanding the mechanistic details of its biology, epidemiology, antifungal resistance, and pathogenesis with a goal of developing novel tools and methods for the prevention, diagnosis, and treatment of C. auris infections.


Asunto(s)
Antifúngicos/farmacología , Candidiasis/epidemiología , Farmacorresistencia Fúngica/efectos de los fármacos , Saccharomycetales/patogenicidad , Candida/genética , Candida/patogenicidad , Candidiasis/microbiología , Humanos , Saccharomycetales/efectos de los fármacos , Virulencia/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-33077664

RESUMEN

Candida auris is a newly emerging fungal pathogen of humans and has attracted considerable attention from both the clinical and basic research communities. Clinical isolates of C. auris are often resistant to one or more antifungal agents. To explore how antifungal resistance develops, we performed experimental evolution assays using a fluconazole-susceptible isolate of C. auris (BJCA001). After a series of passages through medium containing increasing concentrations of fluconazole, fungal cells acquired resistance. By sequencing and comparing the genomes of the parental fluconazole-susceptible strain and 26 experimentally evolved strains of C. auris, we found that a portion of fluconazole-resistant strains carried one extra copy of chromosome V. In the absence of fluconazole, C. auris cells rapidly became susceptible and lost the extra copy of chromosome V. Genomic and transcriptome sequencing (RNA-Seq) analyses indicate that this chromosome carries a number of drug resistance-related genes, which were transcriptionally upregulated in the resistant, aneuploid strains. Moreover, missense mutations were identified in the genes TAC1B, RRP6, and SFT2 in all experimentally evolved strains. Our findings suggest that the gain of an extra copy of chromosome V is associated with the rapid acquisition of fluconazole resistance and may represent an important evolutionary mechanism of antifungal resistance in C. auris.


Asunto(s)
Candida , Fluconazol , Aneuploidia , Antifúngicos/farmacología , Candida/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana
5.
Emerg Microbes Infect ; 13(1): 2302843, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38238874

RESUMEN

The emerging human fungal pathogen Candida auris has become a serious threat to public health. This pathogen has spread to 10 provinces in China as of December 2023. Here we describe 312 C. auris-associated hospitalizations and 4 outbreaks in healthcare settings in China from 2018 to 2023. Three genetic clades of C. auris have been identified during this period. Molecular epidemiological analyses indicate that C. auris has been introduced and local transmission has occurred in multiple instances in China. Most C. auris isolated from China (98.7%) exhibited resistance to fluconazole, while only a small subset of strains were resistant to amphotericin B (4.2%) and caspofungin (2.2%).


Asunto(s)
Antifúngicos , Candidiasis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Candidiasis/microbiología , Candida auris , Brotes de Enfermedades , China/epidemiología , Pruebas de Sensibilidad Microbiana
6.
Int J Antimicrob Agents ; 62(6): 107010, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863341

RESUMEN

OBJECTIVES: Infections caused by azole-resistant Candida tropicalis strains are increasing in clinical settings. The reason for this epidemical change and the mechanisms of C. tropicalis azole resistance are not fully understood. METHODS: In this study, we performed biological and genomic analyses of 239 C. tropicalis strains, including 115 environmental and 124 human commensal isolates. RESULTS: Most (99.2%) of the isolates had a baseline diploid genome. The strains from both environmental and human niches exhibit similar abilities to survive under stressful conditions and produce secreted aspartic proteases. However, the human commensal isolates exhibited a stronger ability to filament than the environmental strains. We found that 19 environmental isolates (16.5%) and 24 human commensal isolates (19.4%) were resistant to fluconazole. Of the fluconazole-resistant strains, 37 isolates (86.0%) also exhibited cross-resistance to voriconazole. Whole-genome sequencing and phylogenetic analyses revealed that both environmental and commensal isolates were widely distributed in a number of genetic clusters, but the two populations exhibited a close genetic association. The majority of fluconazole-resistant isolates were clustered within a single clade (X). CONCLUSIONS: The combination of hotspot mutations (Y132F and S154F) and genomic expansion of ERG11, which encodes the azole target lanosterol 14-α-demethylase and represents a major target of azole drugs, was a major mechanism for the development of azole resistance. The isolates carrying both hotspot mutations and genomic expansion of ERG11 exhibited cross-resistance to fluconazole and voriconazole. Moreover, the azole-resistant isolates from both the environmental and human commensal niches showed similar genotypes.


Asunto(s)
Azoles , Candida tropicalis , Farmacorresistencia Fúngica , Fluconazol , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Azoles/farmacología , Candida tropicalis/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Genómica , Pruebas de Sensibilidad Microbiana , Mutación , Filogenia , Voriconazol/farmacología
7.
Sci China Life Sci ; 66(8): 1915-1929, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118508

RESUMEN

Sexual reproduction is prevalent in eukaryotic organisms and plays a critical role in the evolution of new traits and in the generation of genetic diversity. Environmental factors often have a direct impact on the occurrence and frequency of sexual reproduction in fungi. The regulatory effects of atmospheric relative humidity (RH) on sexual reproduction and pathogenesis in plant fungal pathogens and in soil fungi have been extensively investigated. However, the knowledge of how RH regulates the lifecycles of human fungal pathogens is limited. In this study, we report that low atmospheric RH promotes the development of mating projections and same-sex (homothallic) mating in the human fungal pathogen Candida albicans. Low RH causes water loss in C. albicans cells, which results in osmotic stress and the generation of intracellular reactive oxygen species (ROS) and trehalose. The water transporting aquaporin Aqy1, and the G-protein coupled receptor Gpr1 function as cell surface sensors of changes in atmospheric humidity. Perturbation of the trehalose metabolic pathway by inactivating trehalose synthase or trehalase promotes same-sex mating in C. albicans by increasing osmotic or ROS stresses, respectively. Intracellular trehalose and ROS signal the Hog1-osmotic and Hsf1-Hsp90 signaling pathways to regulate the mating response. We, therefore, propose that the cell surface sensors Aqy1 and Gpr1, intracellular trehalose and ROS, and the Hog1-osmotic and Hsf1-Hsp90 signaling pathways function coordinately to regulate sexual mating in response to low atmospheric RH conditions in C. albicans.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Trehalosa/metabolismo , Humedad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Reproducción/fisiología
8.
Virulence ; 12(1): 1388-1399, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34060424

RESUMEN

The fungal pathogen Candida auris has emerged as a new threat to human health. We previously reported the first isolate of C. auris (BJCA001) in China, which belongs to the South Asian clade (I) and was susceptible to all antifungals tested. In this study, we report the isolation of a drug-resistant C. auris strain (BJCA002) from the same city (Beijing). Strain BJCA002 belongs to the South African clade (III) and is resistant to fluconazole and amphotericin B based on the tentative MIC breakpoints. Taking advantage of the two isolates with distinct antifungal susceptibility and genetic origins, we performed a biological and genomic comparative study. Besides antifungal susceptibility, strains BJCA001 and BJCA002 showed differences in multiple aspects including morphologies, expression of virulence factors, virulence, mating type, and genomic sequence and organization. Notably, strain BJCA002 was less virulent than BJCA001 in both the Galleria mellonella and mouse systemic infection models. Genomic analysis demonstrated that strain BJCA002 but not BJCA001 had multiple mutations in drug resistance-associated genes, including a hot-spot mutation of ERG11 (VF125AL, namely V125A and F126L) and some missense mutations in CDR1, MDR1, and TAC1. Notably, strain BJCA001 carried 64 copies of the Zorro3 retrotransposon, whereas BJCA002 had only 3 copies in the genome. Taken together, our findings not only reveal the genetic and phenotypic diversities of the two isolates from Beijing, China, but also shed new light on the genetic basis of the antifungal resistance and virulence of C. auris.


Asunto(s)
Antifúngicos , Candida auris , Farmacorresistencia Fúngica , Animales , Antifúngicos/farmacología , Beijing , Candida auris/efectos de los fármacos , Candida auris/genética , Genómica , Ratones , Pruebas de Sensibilidad Microbiana
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6259-6262, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947273

RESUMEN

Lung cancer is one of the most fatal cancers in the world. If the lung cancer can be diagnosed at an early stage, the survival rate of patients post treatment increases dramatically. Computed Tomography (CT) diagram is an effective tool to detect lung cancer. In this paper, we proposed a novel two-stage convolution neural network (2S-CNN) to classify the lung CT images. The structure is composed of two CNNs. The first CNN is a basic CNN, whose function is to refine the input CT images to extract the ambiguous CT images. The output of first CNN is fed into another inception CNN, a simplified version of GoogLeNet, to enhance the better recognition on complex CT images. The experimental results show that our 2S-CNN structure has achieved an accuracy of 89.6%.


Asunto(s)
Neoplasias Pulmonares/clasificación , Redes Neurales de la Computación , Lesiones Precancerosas , Humanos , Pulmón , Tomografía Computarizada por Rayos X
10.
Emerg Microbes Infect ; 7(1): 188, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30482894

RESUMEN

Morphological plasticity has historically been an indicator of increased virulence among fungal pathogens, allowing rapid adaptation to changing environments. Candida auris has been identified as an emerging multidrug-resistant human pathogen of global importance. Since the discovery of this species, it has been thought that C. auris is incapable of filamentous growth. Here, we report the discovery of filamentation and three distinct cell types in C. auris: typical yeast, filamentation-competent (FC) yeast, and filamentous cells. These cell types form a novel phenotypic switching system that contains a heritable (typical yeast-filament) and a nonheritable (FC-filament) switch. Intriguingly, the heritable switch between the typical yeast and the FC/filamentous phenotype is triggered by passage through a mammalian body, whereas the switch between the FC and filamentous phenotype is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote the FC yeast phenotype. Systemic in vivo and in vitro investigations were used to characterize phenotype-specific variations in global gene expression, secreted aspartyl proteinase (SAP) activity, and changes in virulence, indicating potential for niche-specific adaptations. Taken together, our study not only sheds light on the pathogenesis and biology of C. auris but also provides a novel example of morphological and epigenetic switching in fungi.


Asunto(s)
Candida/genética , Candida/patogenicidad , Compartimento Celular , Regulación Fúngica de la Expresión Génica , Temperatura , Animales , Proteasas de Ácido Aspártico/metabolismo , Candida/crecimiento & desarrollo , Candidiasis/microbiología , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Hifa/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Fenotipo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA