Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(4): 1231-1237, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251914

RESUMEN

Ferroelectricity, especially the Si-compatible type recently observed in hafnia-based materials, is technologically useful for modern memory and logic applications, but it is challenging to differentiate intrinsic ferroelectric polarization from the polar phase and oxygen vacancy. Here, we report electrically controllable ferroelectricity in a Hf0.5Zr0.5O2-based heterostructure with Sr-doped LaMnO3, a mixed ionic-electronic conductor, as an electrode. Electrically reversible extraction and insertion of an oxygen vacancy into Hf0.5Zr0.5O2 are macroscopically characterized and atomically imaged in situ. Utilizing this reversible process, we achieved multilevel polarization states modulated by the electric field. Our study demonstrates the usefulness of the mixed conductor to repair, create, manipulate, and utilize advanced ferroelectric functionality. Furthermore, the programmed ferroelectric heterostructures with Si-compatible doped hafnia are desirable for the development of future ferroelectric electronics.

2.
J Am Chem Soc ; 146(20): 14095-14104, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718380

RESUMEN

Investigating the growth kinetics of Li metal in solid-state batteries is crucial to both a fundamental understanding and practical application. Here, by directly observing the formation of Li metal from Ta-doped Li6.4La3Zr1.4Ta0.6O12 (LLZTO) in a transmission electron microscope, the growth kinetics is analyzed quantitatively. The growth kinetics of Li deposits shows a cubic-curve characteristic for LLZTO with Li-source-free. Instead, a linear growth process is observed with Li-source supplied. The impact of the illuminating electron dose rate on the growth kinetics is clarified, indicating that even low dose rates (1-3 e-/Å2/s) could affect Li growth, highlighting the significance of controlling dose rates. Furthermore, a new pathway for the formation of Li metal from Li-containing materials utilizing the field-emission effect is reported. This work has implications on the failure mechanism in solid batteries by using limited Li anodes and opens pathways for regulating Li growth in LLZTO at various scenarios, which can also extend to other ionic conductors.

3.
Nano Lett ; 23(3): 887-894, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36648987

RESUMEN

The microstructure of the Li7La3Zr2O12 (LLZO) garnet solid electrolyte is critical for its performance in all-solid-state lithium-ion battery. During conventional high-temperature sintering, second phases are generated at the grain boundaries due to the reaction between sintering aids and LLZO, which have an enormous effect on the performances of LLZO. However, a detailed structure study of the second phases and their impact on physical properties is lacking. Here, crystal structures of the second phases in LLZO pellets are studied in detail by transmission electron microscopy. Three different crystal structures of Li-Al-O second phases, γ-LiAlO2, α-Li5AlO4, and ß-Li5AlO4 were identified, and atomic-scale lattice information was obtained by applying low-dose high-resolution imaging for these electron-beam-sensitive second phases. On this basis, the structure-property relationship of these structures was explored. It was found that sintering aids with a higher Li/Al ratio are beneficial to form Li-rich second phases, which result in more highly ionic conductive LLZO.

4.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686448

RESUMEN

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the digestive tract and originate from the interstitial cells of Cajal (ICC), which is the pacemaker for peristaltic movement in the gastrointestinal tract. Existing GIST cell lines are widely used as cell models for in vitro experimental studies because the mutation sites are known. However, the immortalization methods of these cell lines are unknown, and no Chinese patient-derived GIST cell lines have been documented. Here, we transfected simian virus 40 large T antigen (SV40LT) into primary GIST cells to establish an immortalized human GIST cell line (ImGIST) for the first time. The ImGIST cells had neuronal cell-like irregular radioactive growth and retained the fusion growth characteristics of GIST cells. They stably expressed signature proteins, maintained the biological and genomic characteristics of normal primary GIST cells, and responded well to imatinib, suggesting that ImGIST could be a potential in vitro model for research in GIST to explore the molecular pathogenesis, drug resistance mechanisms, and the development of new adjuvant therapeutic options.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/genética , Virus 40 de los Simios/genética , Antígenos Virales de Tumores , Línea Celular
5.
Ann Diagn Pathol ; 61: 152050, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257237

RESUMEN

The purpose of this study was to investigate the clinicopathological characteristics and prognostic factors of patients with gastrointestinal stromal tumors (GISTs) in mainland China. We retrospectively analyzed the clinicopathological characteristics and survival data of 149 patients with GISTs admitted to Shengjing Hospital of China Medical University from July 2011 to October 2017. The following details were collected from all patients: sex, age, symptoms, preoperative examination, pathology, surgical procedures, and follow-up data. Recurrence-free survival (RFS) and overall survival (OS) were used to assess survival outcomes. The Kaplan-Meier method was performed to draw survival curves and calculate the survival rate. The log-rank test was performed for univariate analysis, and the significant factors were included in multivariate analysis using a Cox proportional hazards model to determine prognostic factors. The 5-year RFS rate was 78.5 % and 5-year OS rate was 83.2 %. The univariate analysis showed that the following prognostic factors could significantly predict 5-year RFS and OS: tumor size, initial status, modified NIH classification, mitotic index, CD117 expression, Ki67 index, and surgical procedure (P < 0.05). The multivariate analysis showed that mitotic index, CD117, and Ki67 index were independent prognostic factors associated with 5-year RFS and 5-year OS. This study provides a reference for the clinicopathological characteristics and prognostic factors of patients with GISTs in mainland China, and the results suggest that focusing on immunohistochemical markers in clinical practice may be more reliable for the prediction of clinical outcomes.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/diagnóstico , Tumores del Estroma Gastrointestinal/patología , Estudios Retrospectivos , Antígeno Ki-67 , Pronóstico , Índice Mitótico
6.
Nano Lett ; 21(12): 5285-5292, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34076444

RESUMEN

Lithium-sulfur batteries have ultrahigh theoretical energy densities, which makes them one of the most promising next-generation energy storage systems. However, it is still difficult to achieve large-scale commercialization because of the severe lithium polysulfide (LiPS) shuttle effect and low sulfur loading. Here, we report a flexible lithium-sulfur battery of a high sulfur loading with the assistance of NiCo2O4 nanofiber array grown carbon cloth. The NiCo2O4 nanofibers are ideal electrocatalysts for accelerating LiPS conversion kinetics through strong chemical interactions. Therefore, the composite cathode delivers a high specific capacity of 1280 mAh g-1 at 0.2 C with a sulfur loading of 3.5 mg cm-2, and it can maintain a high specific capacity of 660 mAh g-1 after 200 cycles, showing a good cycle stability. The "layer-by-layer" stacking strategy enables the Li-S battery with a high S loading of ∼9.0 mg cm-2 to deliver a high areal capacity of 8.9 mAh cm-2.

7.
Ultramicroscopy ; 253: 113823, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37536123

RESUMEN

Focused ion beam (FIB) is a widely used method to prepare transmission electron microscopy (TEM) specimen from bulk materials. However, the surface amorphous layer induced by ion beam is an obstacle to obtain high-quality atomic-scale images for quantitative analysis, especially for the analysis of light elements such as lithium in lithium-ion conducting solid electrolytes. Here, taking lithium-ion conducting solid electrolyte materials as an example, the advantages and disadvantages of applying low-energy Ar+ ion for fine milling after FIB are investigated. Combining Monte-Carlo simulations with ion milling experiments, the milling parameters are evaluated and discussed in detail. With optimized parameters, TEM specimens with less beam damage and thinner amorphous layer were prepared, enabling the acquisition of high-quality atomic-scale images. Furthermore, low-energy Ar+ ion milling is also able to remove hydrocarbon contamination formed during the electron beam illumination inside the microscope, making the contaminated TEM specimens reusable.

8.
Chem Commun (Camb) ; 59(98): 14551-14554, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37990561

RESUMEN

Applying galvanic replacement reactions (GRRs) to the host chiral nanoparticles (CNPs) is an exclusive method to generate alloy CNPs with mesoporous structures through chirality transfer. However, the GRR-mediated chirality transfer is too inefficient to impose strong optical activities on the alloy mesoporous CNPs (or m-CNPs). Here we dope the host with gold (Au) to significantly enhance the chirality transfer, and additionally employ the Au adhesion layer to increase the production yield (PY) of binary m-CNPs.

9.
Front Oncol ; 12: 933248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147927

RESUMEN

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At present, surgery is the first-line treatment for primary resectable GISTs; however, the recurrence rate is high. Imatinib mesylate (IM) is an effective first-line drug used for the treatment of unresectable or metastatic recurrent GISTs. More than 80% of patients with GISTs show significantly improved 5-year survival after treatment; however, approximately 50% of patients develop drug resistance after 2 years of IM treatment. Therefore, an in-depth research is urgently needed to reveal the mechanisms of secondary resistance to IM in patients with GISTs and to develop new therapeutic targets and regimens to improve their long-term prognoses. In this review, research on the mechanisms of secondary resistance to IM conducted in the last 5 years is discussed and summarized from the aspects of abnormal energy metabolism, gene mutations, non-coding RNA, and key proteins. Studies have shown that different drug-resistance mechanism networks are closely linked and interconnected. However, the influence of these drug-resistance mechanisms has not been compared. The combined inhibition of drug-resistance mechanisms with IM therapy and the combined inhibition of multiple drug-resistance mechanisms are expected to become new therapeutic options in the treatment of GISTs. In addition, implementing individualized therapies based on the identification of resistance mechanisms will provide new adjuvant treatment options for patients with IM-resistant GISTs, thereby delaying the progression of GISTs. Previous studies provide theoretical support for solving the problems of drug-resistance mechanisms. However, most studies on drug-resistance mechanisms are still in the research stage. Further clinical studies are needed to confirm the safety and efficacy of the inhibition of drug-resistance mechanisms as a potential therapeutic target.

10.
Adv Mater ; 34(33): e2200430, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35643987

RESUMEN

Long processing time and high temperatures are often required in sintering ceramic electrolytes, which lead to volatile element loss and high cost. Here, an ultrafast sintering method of microwave-induced carbothermal shock to fabricate various ceramic electrolytes in seconds is reported. Furthermore, it is also possible to integrate the electrode and electrolyte in one step by simultaneous co-sintering. Based on this ultrafast co-sintering technique, an all-solid-state lithium-metal battery with a high areal capacity is successfully achieved, realizing a promising electrochemical performance at room temperature. This method can extend to other various ceramic multilayer-based solid devices.

11.
Nat Catal ; 5(11): 1019-1029, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36844635

RESUMEN

Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO2/N2-fixing bacterium Xanthobacter autotrophicus with CdTe quantum dots for light-driven CO2 and N2 fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.

12.
Adv Mater ; 33(1): e2002325, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33241602

RESUMEN

Metallic lithium (Li), considered as the ultimate anode, is expected to promise high-energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium-metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all-solid-state lithium-metal battery (ASSLMB) based on a garnet-oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long-term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high-voltage or high mass-loading cathode. This study sheds light on the practical high-energy all-solid-state batteries under the constrained condition of a limited Li metal anode.

13.
Nat Nanotechnol ; 16(5): 584-591, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33574600

RESUMEN

Anionic diffusion in a soft crystal lattice of hybrid halide perovskites affects their stability, optoelectronic properties and the resulting device performance. The use of two-dimensional (2D) halide perovskites improves the chemical stability of perovskites and suppresses the intrinsic anionic diffusion in solid-state devices. Based on this strategy, devices with an enhanced stability and reduced hysteresis have been achieved. However, a fundamental understanding of the role of organic cations in inhibiting anionic diffusion across the perovskite-ligand interface is missing. Here we demonstrate the first quantitative investigation of the anionic interdiffusion across atomically flat 2D vertical heterojunctions. Interestingly, the halide diffusion does not follow the classical diffusion process. Instead, a 'quantized' layer-by-layer diffusion model is proposed to describe the behaviour of the anionic migration in 2D halide perovskites. Our results provide important insights into the mechanism of anionic diffusion in 2D perovskites and provide a new materials platform with an enhanced stability for heterostructure integration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA