Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 262(3): 320-333, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38108121

RESUMEN

Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Enfisema , Enfisema Pulmonar , Transducción de Señal , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Enfisema/metabolismo , Pulmón/metabolismo , Enfisema Pulmonar/genética , Transducción de Señal/fisiología , Proteína Smad1/genética , Proteína Smad1/metabolismo
2.
Br J Cancer ; 130(11): 1841-1854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553589

RESUMEN

BACKGROUND: Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown. METHODS: A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress. Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and CIBERSORTx analysis. RESULTS: We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a 'MYCN' signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an 'inflamed' gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively. CONCLUSION: We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients with MYCN non-amplified neuroblastomas.


Asunto(s)
Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/clasificación , Neuroblastoma/patología , Neuroblastoma/mortalidad , Proteína Proto-Oncogénica N-Myc/genética , Pronóstico , Aurora Quinasa A/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Amplificación de Genes
3.
BMC Infect Dis ; 24(1): 535, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807038

RESUMEN

BACKGROUND: To assess the immunogenicity of the current primary polio vaccination schedule in China and compare it with alternative schedules using Sabin or Salk-strain IPV (sIPV, wIPV). METHODS: A cross-sectional investigation was conducted at four sites in Chongqing, China, healthy infants aged 60-89 days were conveniently recruited and divided into four groups according to their received primary polio vaccination schedules (2sIPV + bOPV, 2wIPV + bOPV, 3sIPV, and 3wIPV). The sero-protection and neutralizing antibody titers against poliovirus serotypes (type 1, 2, and 3) were compared after the last dose. RESULTS: There were 408 infants completed the protocol. The observed seropositivity was more than 96% against poliovirus types 1, 2, and 3 in all groups. IPV-only groups induced higher antibody titers(GMT) against poliovirus type 2 (Median:192, QR: 96-384, P<0.05) than the "2IPV + bOPV" group. While the "2IPV + bOPV" group induced significantly higher antibody titers against poliovirus type 1 (Median:2048, QR: 768-2048, P<0.05)and type 3 (Median:2048, QR: 512-2048, P<0.05) than the IPV-only group. CONCLUSIONS: Our findings have proved that the two doses of IPV with one dose of bOPV is currently the best polio routine immunization schedule in China.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Esquemas de Inmunización , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Poliovirus , Humanos , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Poliomielitis/prevención & control , Poliomielitis/inmunología , Lactante , Vacuna Antipolio Oral/inmunología , Vacuna Antipolio Oral/administración & dosificación , Masculino , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Estudios Transversales , China , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Poliovirus/inmunología , Inmunogenicidad Vacunal , Vacunación
4.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38899349

RESUMEN

OBJECTIVES: To compare the pregnancy and neonatal outcomes of in vitro fertilization-embryo transfer (IVF-ET) with fresh or frozen embryos for male patients with severely low sperm count and motility. METHODS: A total of 2300 male patients with severely low sperm count and motility underwent IVT-ET in the Reproduction Medicine Center, Sir Run Run Shaw Hospital from April 2018 to April 2022. After applying the propensity score matching (PSM), 473 fresh embryo transferred cycles and 473 frozen embryo transferred cycles were selected in the study, and the pregnancy and neonatal outcomes were compared between two groups. RESULTS: There were no significant differences in pregnancy outcomes and neonatal outcomes between fresh and frozen embryo groups (all P>0.05). In the stratification analysis, the number of retrieved oocytes in the fresh good-quality embryo transfer group was significantly increased compared with the fresh poor-quality embryo group (P<0.05), but the very early pregnancy loss rates were similar between the two groups, while the rate in fresh good-quality embryo transfer group was significantly higher than that in the frozen good-quality embryo transfer group (P<0.05). Among different age groups of women, the number of retrieved oocytes and the level of estrogen in the fresh embryo transfer group was significantly higher in the 20 to <30 years old group than that in the 30 to <35 years old group (both P<0.05), but the clinical pregnancy rate was lower in the 20 to <30 years old group than that in the 30 to <35 years old group (P>0.05). Additionally, the very early pregnancy loss was significantly increased in the fresh embryo group compared with the frozen embryo group in the 20 to <30 years age group (P<0.05). CONCLUSIONS: There is no significant difference in pregnancy and neonatal outcomes between fresh embryo transfer and frozen embryo transfer for male patients with severely low sperm count and motility undergoing IVF-ET. Due to shorter transfer time, less embryo freezing damage and reduced costs, fresh embryo transfer can be considered a first choice. However, it is not necessary to pursue fresh embryo transfer if maternal oestrogen levels are too high and there is a tendency of overstimulation.

5.
Small ; 19(35): e2300403, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104822

RESUMEN

Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.


Asunto(s)
Neoplasias Encefálicas , Nanocápsulas , Ratones , Animales , Células Endoteliales/metabolismo , Biomimética , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de la Membrana/metabolismo , Barrera Hematoencefálica/metabolismo
6.
Mikrochim Acta ; 190(8): 341, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530902

RESUMEN

A novel stimulus-responsive surface-enhanced Raman scattering (SERS) nanoprobe has been developed for sensitive glutathione (GSH) detection based on manganese dioxide (MnO2) core and silver/gold nanoparticles (Ag/Au NPs). The MnO2 core is not only capable to act as a scaffold to amplify the SERS signal via producing "hot spots", but also can be degraded in the presence of the target and thus greatly enhance the nanoprobe sensitivity for sensing of GSH. This approach enables a wide linear range from 1 to 100 µM with a 2.95 µM (3σ/m) detection limit. Moreover, the developed SERS nanoprobe represents great possibility in both sensitive detection of intracellular GSH and even can monitor the change of intracellular GSH level when the stimulant occurs. This sensing system not merely offers a novel strategy for sensitive sensing of GSH, but also provides a new avenue for other biomolecules detection.


Asunto(s)
Nanopartículas del Metal , Oro , Compuestos de Manganeso , Plata , Óxidos , Glutatión
7.
Med Res Rev ; 42(3): 1037-1063, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34786735

RESUMEN

Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self-renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti-CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad-spectrum activities, including the important anti-CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor-specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/patología , Células Madre Neoplásicas/patología , Piranos/metabolismo , Piranos/farmacología , Piranos/uso terapéutico , Microambiente Tumoral
8.
Theor Appl Genet ; 135(1): 321-336, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34657161

RESUMEN

KEY MESSAGE: SYL3-k allele increases the outcrossing rate of male sterile line and the yield of hybrid F1 seeds via enhancement of endogenous GA4 content in Oryza sativa L. pistils. The change in style length might be an adaptation of rice cultivation from south to north in the northern hemisphere. The style length (SYL) in rice is one of the major factors influencing the stigma exertion, which affects the outcross rate of male sterile line and the yield of hybrid F1 seeds. However, the biological mechanisms underlying SYL elongation remain elusive. Here, we report a map-based cloning and characterisation of the allele qSYL3-k. The qSYL3-k allele encodes a MADS-box family transcription factor, and it is expressed in various rice organs. The qSYL3-k allele increases SYL via the elongation of cell length in the style, which is associated with a higher GA4 content in the pistil. The expression level of OsGA3ox2 in pistils with qSYL3-k alleles is significantly higher than that in pistils with qSYL3-n allele on the same genome background of Nipponbare. The yield of F1 seeds harvested from plants with 7001SSYL3-k alleles was 16% higher than that from plants with 7001SSYL3-n allele. The sequence data at the qSYL3 locus in 136 accessions showed that alleles containing the haplotypes qSYL3AA, qSYL3AG, and qSYL3GA increased SYL, whereas those containing the haplotype qSYL3GG decreased it. The frequency of the haplotype qSYL3GG increases gradually from the south to north in the northern hemisphere. These findings will facilitate improvement in SYL and yield of F1 seeds henceforward.


Asunto(s)
Flores/genética , Proteínas de Dominio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Flores/anatomía & histología , Flores/metabolismo , Giberelinas/metabolismo , Proteínas de Dominio MADS/fisiología , Oryza/anatomía & histología , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/fisiología
9.
Mikrochim Acta ; 189(9): 351, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008738

RESUMEN

Reactive oxygen species (ROS) are involved in drug-induced cytotoxicity by regulating cell signaling, inducing oxidative stress, and damaging the DNA and proteins. Examining ROS production in cells under the stimulation of chemotherapeutic drugs is of great importance for understanding the ROS roles and identifying the mechanism of drug-induced cytotoxicity. Here, a silver/gold (Ag/Au) nanoshell-based colorimetric and surface-enhanced Raman spectroscopy (SERS) dual-response nanoprobe was proposed for ROS sensing on the basis of Ag etching. In this study, as a kind of ROS, hydrogen peroxide (H2O2) was detected by the prepared nanoprobe. The linear ranges of 0.5-100 µM with a limit of detection (LOD) of 0.343 µM for the colorimetric determination and 1-50 µM with LOD of 0.294 µM for SERS determination were achieved. The detection of cellular ROS concentration after stimulation by cisplatin, paclitaxel, doxorubicin, and 5-fluorouracil was validated by the nanoprobe. The nanoprobe could also be used to detect the signal pathway of ROS production by cisplatin stimulation. This study provided a simple and novel dual-response nanoplatform for detecting and monitoring ROS in cells, which holds great potential for elucidating the mechanism of occurrence and treatment of ROS-involved diseases.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Cisplatino , Colorimetría/métodos , Peróxido de Hidrógeno , Nanopartículas del Metal/química , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno
10.
Plant J ; 104(6): 1491-1503, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031564

RESUMEN

Stigma characteristics are important factors affecting the seed yield of hybrid rice per unit area. Natural variation of stigma characteristics has been reported in rice, but the genetic basis for this variation is largely unknown. We performed a genome-wide association study on three stigma characteristics in six environments using 1.3 million single-nucleotide polymorphism (SNPs) characterized in 353 diverse accessions of Oryza sativa. An abundance of phenotypic variation was present in the three stigma characteristics of these collections. We identified four significant SNPs associated with stigma length, 20 SNPs with style length (SYL), and 17 SNPs with the sum of stigma and style length, which were detected repeatedly in more than four environments. Of these SNPs, 28 were novel. We identified two causal gene loci for SYL, OsSYL3 and OsSYL2; OsSYL3 was co-localized with the grain size gene GS3. The SYL of accessions carrying allele OsSYL3AA was significantly longer than that of those carrying allele OsSYL3CC . We also demonstrated that the outcrossing rate of female parents carrying allele OsSYL2AA increased by 5.71% compared with that of the isogenic line carrying allele OsSYL2CC in an F1 hybrid seed production field. The allele frequencies of OsSYL3AA and OsSYL2AA decreased gradually with an increase in latitude in the Northern Hemisphere. Our results should facilitate the improvement in stigma characteristics of parents of hybrid rice.


Asunto(s)
Flores/crecimiento & desarrollo , Oryza/genética , Alelos , Genes de Plantas/genética , Genética de Población , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento/genética , Oryza/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética
11.
Anal Chem ; 93(32): 11251-11258, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34369163

RESUMEN

Photoelectrochemical (PEC) sensors are relatively new sensing platforms with high detection sensitivity and low cost. However, the current PEC biosensors dependent on ultraviolet or visible light as the exciting resource cause injuries to biological samples and systems, which restrains the applications in complicated matrixes. Herein, a near-infrared light (NIR)-initiated PEC biosensor based on NaYF4:Yb,Tm@NaYF4@TiO2@CdS (csUCNRs@TiO2@CdS) was constructed for sensitive detection of acute myocardial infarction (AMI)-related miRNA-133a in an immobilization-free format coupled with a hybridization chain reaction and a redox circle signal amplification strategy. A low-energy 980 nm NIR incident laser was converted to 300-480 nm light to excite the adjacent TiO2@CdS photosensitive shell to generate photocurrent by NaYF4:Yb,Tm@NaYF4 upconversion nanorods. Also, magnetic beads were employed for the homogeneous determination of target miRNA-133a to reduce the recognition steric hindrance and improve the detection sensitivity. The photocurrent response was positively correlated with the level of ascorbic acid as the energy donor to consume photoacoustic holes produced on the surface of csUCNRs@TiO2@CdS, which was generated by alkaline phosphatase catalyzation and regenerated by tris(2-carboxyethyl) phosphine reduction upon the appearance of miRNA-133a. Exerting a NIR-light-driven and immobilization-free strategy, the as-constructed biosensor displayed linearly sensitive and selective determination of miRNA-133a with a detection limit of 36.12 aM. More significantly, the assay method provided a new concept of the PEC sensing strategy driven by NIR light to detect diverse biomarkers with pronounced sensitivity, light stability, and low photodamage.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanotubos , Técnicas Electroquímicas , Rayos Infrarrojos , Límite de Detección
12.
BMC Cancer ; 21(1): 784, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233647

RESUMEN

BACKGROUND: Minichromosome maintenance complex component 6 (MCM6), as an important replication permission factor, is involved in the pathogenesis of various tumors. Here we studied the expression of MCM6 in neuroblastoma and its influence on tumor characteristics and prognosis. METHODS: Publicly available datasets were used to explore the influence of the differential expression of MCM6 on neuroblastoma tumor stage, risk and prognosis. In cell experiments, human neuroblastoma cell lines SK-N-SH and SK-N-BE [ (2)] were utilized to verify the ability of MCM6 to promote cell proliferation, migration and invasion. We further explored the possible molecular mechanism of MCM6 affecting the phenotype of neuroblastoma cells by mutual verification of RNA-seq and western blotting, and flow cytometry to inquire about its potential specific roles in the cell cycle. RESULTS: Through multiple datasets mining, we found that high expression of MCM6 was positively correlated with elevated tumor stage, high risk and poor prognosis in neuroblastoma. At the cellular level, neuroblastoma cell proliferation, migration and invasion were significantly inhibited after MCM6 was interfered by siRNA. Mutual verification of RNA-seq and western blotting suggested that the downstream cell cycle-related genes were differentially expressed after MCM6 interference. Flow cytometric analysis revealed that neuroblastoma cells were blocked in G1/S phase after MCM6 interference. CONCLUSION: MCM6 is considered to be the driving force of G1/S cell cycle progression, and it is also a prognostic marker and a potential novel therapeutic target in neuroblastoma.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Componente 6 del Complejo de Mantenimiento de Minicromosoma/efectos adversos , Neuroblastoma/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones Desnudos , Neuroblastoma/patología , Pronóstico , Transfección , Resultado del Tratamiento
13.
Proc Natl Acad Sci U S A ; 115(18): 4678-4683, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666278

RESUMEN

p21WAF1/CIP1 is a broad-acting cyclin-dependent kinase inhibitor. Its stability is essential for proper cell-cycle progression and cell fate decision. Ubiquitylation by the multiple E3 ubiquitin ligase complexes is the major regulatory mechanism of p21, which induces p21 degradation. However, it is unclear whether ubiquitylated p21 can be recycled. In this study, we report USP11 as a deubiquitylase of p21. In the nucleus, USP11 binds to p21, catalyzes the removal of polyubiquitin chains conjugated onto p21, and stabilizes p21 protein. As a result, USP11 reverses p21 polyubiquitylation and degradation mediated by SCFSKP2, CRL4CDT2, and APC/CCDC20 in a cell-cycle-independent manner. Loss of USP11 causes the destabilization of p21 and induces the G1/S transition in unperturbed cells. Furthermore, p21 accumulation mediated by DNA damage is completely abolished in cells depleted of USP11, which results in abrogation of the G2 checkpoint and induction of apoptosis. Functionally, USP11-mediated stabilization of p21 inhibits cell proliferation and tumorigenesis in vivo. These findings reveal an important mechanism by which p21 can be stabilized by direct deubiquitylation, and they pinpoint a crucial role of the USP11-p21 axis in regulating cell-cycle progression and DNA damage responses.


Asunto(s)
Ciclo Celular , Núcleo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Transducción de Señal , Proteasas Ubiquitina-Específicas/metabolismo , Células A549 , Apoptosis/genética , Núcleo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células HEK293 , Humanos , Proteolisis , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/genética
14.
Angew Chem Int Ed Engl ; 60(22): 12569-12576, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33739576

RESUMEN

The novel theranostic nanosystems based on two-photon fluorescence can achieve higher spatial resolution of deep tissue imaging for simultaneous diagnosis and therapy of a variety of cancers. Herein, we have designed and prepared FRET-based two-photon mesoporous silica nanoparticles (MTP-MSNs) for single-excitation multiplexed intracellular imaging and targeted cancer therapy for the first time. This nanosystem includes two constituents, containing (1) multicolor two-photon mesoporous silica nanoparticles and (2) cancer cell-targeting aptamers that act as gatekeepers for MTP-MSNs. After incubation with cancer cells, the Dox-loaded and aptamer-capped MTP-MSNs could be internalized into the cells, opening the pores and releasing the drug. Furthermore, using two-photon multicolor fluorescence, MTP-MSNs could serve as good contrast agents for multicolor two-photon intracellular imaging with increased imaging depth and improved spatial localization of tissue. In sum, these multicolor MTP-MSNs provide a promising system for traceable targeted cancer therapy with further applications in multiplex intracellular imaging and the screening of drug.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Nanopartículas/química , Neoplasias/diagnóstico , Animales , Aptámeros de Nucleótidos/química , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Rayos Láser , Hígado/efectos de los fármacos , Hígado/patología , Células MCF-7 , Neoplasias/tratamiento farmacológico , Oligodesoxirribonucleótidos/química , Porosidad , Ratas , Dióxido de Silicio/química , Nanomedicina Teranóstica
15.
J Am Chem Soc ; 142(1): 382-391, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31801020

RESUMEN

The inner region of solid tumors is found to be high-pressure, hypoxic, and immunosuppressive, providing a breeding ground for tumor aggressiveness and metastasis. While intratumoral accumulation of nanomedicines combined with immunomodulation would significantly enhance therapeutic efficacy, such potential is challenged by the compressed environment and distinct heterogeneity of the tumor bulk. By using an apoptotic body (AB) as the carrier, we develop an effective and universal intratumoral nanomedicine delivery system for the long-lasting remission of tumors. Our results show that the AB-encapsulated nanomedicine (using CpG immunoadjuvant-modified gold-silver nanorods as a model), after intravenous injection, can be specifically phagocytosed by inflammatory Ly-6C+ monocytes, which then actively infiltrate the tumor center via their natural tumor-homing tendency. With the integration of AB-facilitated intratumoral accumulation, the nanorod-based photothermal effect, and CpG-promoted immunostimulation, this cell-mediated delivery system can not only efficiently ablate primary tumors but also elicit a potent immunity to prevent tumors from metastasizing and recurring.


Asunto(s)
Macrófagos/metabolismo , Monocitos/metabolismo , Nanomedicina , Neoplasias/terapia , Adyuvantes Inmunológicos/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Oro/química , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/prevención & control , Recurrencia Local de Neoplasia/prevención & control , Neoplasias/metabolismo , Neoplasias/patología , Fototerapia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Plant Physiol ; 181(3): 1207-1222, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31519786

RESUMEN

Hybrid rice (Oryza sativa) has been cultivated commercially for 42 years in China. However, poor grain filling still limits the development of hybrid japonica rice. We report here the map-based cloning and characterization of the GRAIN-FILLING RATE1 (GFR1) gene present at a major-effect quantitative trait locus. We elucidated and confirmed the function of GFR1 via genetic complementation experiments and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing in combination with genetic and molecular biological analyses. In addition, we conducted haplotype association analysis to mine the elite alleles of GFR1 among 117 rice accessions. We observed that GFR1 was constitutively expressed and encoded a membrane-localized protein. The allele of the rice accession Ludao (GFR1 Ludao) improved the grain-filling rate of rice by increasing Rubisco initial activity in the Calvin cycle. Moreover, the increased expression of the cell wall invertase gene OsCIN1 in the near isogenic line NIL-GFR1 Ludao promoted the unloading of Suc during the rice grain-filling stage. A yeast two-hybrid assay indicated that the Rubisco small subunit interacts with GFR1, possibly in the regulation of the rice grain-filling rate. Evaluation of the grain-filling rate and grain yield of F1 plants harboring GFR1 Ludao and the alleles of 20 hybrids widely cultivated commercially confirmed that favorable alleles of GFR1 can be used to further improve the grain-filling rate of hybrid japonica rice.


Asunto(s)
Oryza/genética , Proteínas de Plantas/metabolismo , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Técnicas del Sistema de Dos Híbridos
17.
J Psychiatry Neurosci ; 45(5): 334-343, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293840

RESUMEN

Background: The amygdala has been implicated in obsessive-compulsive disorder (OCD), a common, disabling illness. However, the regional distribution of anatomic alterations in this structure and their association with the symptoms of OCD remains to be established. Methods: We collected high-resolution 3D T1-weighted images from 81 untreated patients with OCD and no lifetime history of comorbid psychotic, affective or anxiety disorders, and from 95 age- and sex-matched healthy controls. We extracted the volume of the central nucleus of the amygdala (CeA) and the basolateral complex of the amygdala (BLA) and compared them across groups using FreeSurfer 6.0. In exploratory analyses, we evaluated other subnuclei, including the cortical medial nuclei, the anterior amygdaloid area, and the corticoamygdaloid transition area. Results: Patients with OCD had reduced amygdala volume bilaterally compared with healthy controls (left, p = 0.034; right, p = 0.002). Volume reductions were greater in the CeA (left: -11.9%, p = 0.002; right: -13.3%, p < 0.001) than in the BLA (left lateral nucleus: -3.3%, p = 0.029; right lateral nucleus: -3.9%, p = 0.018; right basal nucleus: -4.1%, p = 0.017; left accessory basal nucleus: -6.5%, p = 0.001; right accessory basal nucleus: -9.3%, p < 0.001). Volume reductions in the CeA were associated with illness duration. Exploratory analysis revealed smaller medial (left: -15.4%, p < 0.001, η2 = 0.101) and cortical (left: -9.1%, p = 0.001, η2 = 0.058; right: -15.4%, p < 0.001, η2 = 0.175) nuclei in patients with OCD compared with healthy controls. Limitations: Although the strict exclusion criteria used in the study helped us to identify OCD-specific alterations, they may have limited generalizability to the broader OCD population. Conclusion: Our results provide a comprehensive anatomic profile of alterations in the amygdala subnuclei in untreated patients with OCD and highlight a distinctive pattern of volume reductions across subnuclei in OCD. Based on the functional properties of the amygdala subnuclei established from preclinical research, CeA impairment may contribute to behavioural inflexibility, and BLA disruption may be responsible for altered fear conditioning and the affective components of OCD.


Asunto(s)
Complejo Nuclear Basolateral/patología , Núcleo Amigdalino Central/patología , Trastorno Obsesivo Compulsivo/patología , Adulto , Complejo Nuclear Basolateral/diagnóstico por imagen , Núcleo Amigdalino Central/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Adulto Joven
18.
J Psychiatry Neurosci ; 45(2): 134-141, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31765114

RESUMEN

Background: The specific role of the corticospinal tract with respect to inattention and impulsive symptoms in children with attention-deficit/hyperactivity disorder (ADHD) has been explored in the past. However, to our knowledge, no study has identified the exact regions of the corticospinal tract that are affected in ADHD. We aimed to determine comprehensive alterations in the white matter microstructure of the corticospinal tract and underlying neuropsychological substrates in ADHD. Methods: We recruited 38 drug-naïve children with ADHD and 34 typically developing controls. We employed a tract-based quantitative approach to measure diffusion parameters along the trajectory of the corticospinal tract, and we further correlated alterations with attention and response inhibition measures. Results: Compared with controls, children with ADHD demonstrated significantly lower fractional anisotropy and higher radial diffusivity at the level of cerebral peduncle, and higher fractional anisotropy at the level of the posterior limb of the internal capsule in the right corticospinal tract only. As well, increased fractional anisotropy in the posterior limb of the internal capsule was negatively correlated with continuous performance test attention quotients and positively correlated with reaction time on the Stroop Colour­Word Test; increased radial diffusivity in the right peduncle region was positively correlated with omissions in the Stroop test. Limitations: The sample size was relatively small. Moreover, we did not consider the different subtypes of ADHD and lacked sufficient power to analyze subgroup differences. Higher-order diffusion modelling is needed in future white matter studies. Conclusion: We demonstrated specific changes in the right corticospinal tract in children with ADHD. Correlations with measures of attention and response inhibition underscored the functional importance of corticospinal tract disturbance in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Tractos Piramidales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Niño , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Test de Stroop
19.
BMC Genomics ; 20(1): 893, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752718

RESUMEN

BACKGROUND: Parasitic insects are well-known biological control agents for arthropod pests worldwide. They are capable of regulating their host's physiology, development and behaviour. However, many of the molecular mechanisms involved in host-parasitoid interaction remain unknown. RESULTS: We sequenced the genomes of two parasitic wasps (Cotesia vestalis, and Diadromus collaris) that parasitize the diamondback moth Plutella xylostella using Illumina and Pacbio sequencing platforms. Genome assembly using SOAPdenovo produced a 178 Mb draft genome for C. vestalis and a 399 Mb draft genome for D. collaris. A total set that contained 11,278 and 15,328 protein-coding genes for C. vestalis and D. collaris, respectively, were predicted using evidence (homology-based and transcriptome-based) and de novo prediction methodology. Phylogenetic analysis showed that the braconid C. vestalis and the ichneumonid D. collaris diverged approximately 124 million years ago. These two wasps exhibit gene gains and losses that in some cases reflect their shared life history as parasitic wasps and in other cases are unique to particular species. Gene families with functions in development, nutrient acquisition from hosts, and metabolism have expanded in each wasp species, while genes required for biosynthesis of some amino acids and steroids have been lost, since these nutrients can be directly obtained from the host. Both wasp species encode a relative higher number of neprilysins (NEPs) thus far reported in arthropod genomes while several genes encoding immune-related proteins and detoxification enzymes were lost in both wasp genomes. CONCLUSIONS: We present the annotated genome sequence of two parasitic wasps C. vestalis and D. collaris, which parasitize a common host, the diamondback moth, P. xylostella. These data will provide a fundamental source for studying the mechanism of host control and will be used in parasitoid comparative genomics to study the origin and diversification of the parasitic lifestyle.


Asunto(s)
Genoma de los Insectos , Mariposas Nocturnas/parasitología , Avispas/genética , Animales , Genes de Insecto , Inmunidad/genética , Familia de Multigenes , Filogenia , Avispas/clasificación
20.
J Am Chem Soc ; 141(10): 4282-4290, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30730715

RESUMEN

In this article, we used an artificial DNA base to manipulate the formation of DNA nanoflowers (NFs) to easily control their sizes and functionalities. Nanoflowers have been reported as the noncanonical self-assembly of multifunctional DNA nanostructures, assembled from long DNA building blocks generated by rolling circle replication (RCR). They could be incorporated with myriad functional moieties. However, the efficacy of these DNA NFs as potential nanocarriers delivering cargo in biomedicine is limited by the bioavailability and therapeutic efficacy of their cargo. Here we report the incorporation of metal-containing artificial analogues into DNA strands to control the size and the functions of NFs. We have engineered bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers (Sgc8-NFs-Fc) via the incorporation of an artificial sandwich base. More specifically, the introduction of a ferrocene base not only resulted in the size controllability of Sgc8-NFs-Fc from 1000 to 50 nm but also endowed Sgc8-NFs-Fc with self-degradability in the presence of H2O2 via Fenton's reaction. In vitro experiments confirmed that Sgc8-NFs-Fc/Dox could be selectively taken up by protein tyrosine kinase 7 (PTK7)-positive cancer cells and subsequently cleaved via Fenton's reaction, resulting in rapid release kinetics, nuclear accumulation, and enhanced cytotoxicity of their cargo. In vivo experiments further confirmed that Sgc8-NFs-Fc has good tumor-targeting ability and could significantly improve the therapeutic efficacy of doxorubicin in a xenograft tumor model. On the basis of their tunable size and on-demand drug release kinetics upon H2O2 stimulation, the Sgc8-NFs-Fc nanocarriers possess promising potential in drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , ADN/química , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Animales , Línea Celular Tumoral , ADN/síntesis química , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Femenino , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Humanos , Metalocenos/síntesis química , Metalocenos/química , Ratones Endogámicos BALB C , Tamaño de la Partícula , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA